题目内容

11.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是110°.

分析 由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.

解答 解:∵∠BDC=∠A+∠ABD,
∴∠ABD=95°-60°=35°,
∵BD是∠ABC的角平分线,
∴∠ABC=2∠ABD=70°,
∵DE∥BC,
∴∠BED+∠ABC=180°,
∴∠BED=180°-70°=110°.
故答案为:110°.

点评 本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网