题目内容

14.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则CD弦长为(  )
A.$\frac{3}{2}$cmB.$\frac{3}{2}$$\sqrt{3}$cmC.3$\sqrt{3}$cmD.6cm

分析 根据圆周角定理可求出∠COB的度数,再利用特殊角的三角函数值及垂径定理即可解答.

解答 解:∵∠CDB=30°,
∴∠COB=60°,
又∵OC=3cm,CD⊥AB于点E,
∴OE=$\frac{3}{2}$,
解得CE=$\frac{3}{2}$$\sqrt{3}$cm,
∴CD=3$\sqrt{3}$cm.
故选C.

点评 本题考查了垂径定理、勾股定理以及解直角三角形.此题难度不大,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网