题目内容

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=
10
,tan∠AOC=
1
3
,点B的坐标为(m,-2).
(1)求反比例函数和一次函数的解析式;
(2)求S△AOC的值.
考点:反比例函数与一次函数的交点问题
专题:
分析:(1)过A作AE⊥X轴于E,由tan∠AOE=
1
3
,得到OE=3AE,根据勾股定理即可求出AE和OE的长,即得到A的坐标,代入双曲线即可求出k的值,得到解析式;把B的坐标代入反比例函数的解析式即可求出B的坐标,把A和B的坐标代入一次函数的解析式即可求出a、b的值,即得到答案;
(2)求出C的坐标,根据三角形的面积公式求出即可.
解答:解:(1)过A作AE⊥x轴于E,
tan∠AOE=
1
3

∴OE=3AE,
∵OA=
10
,由勾股定理得:OE2+AE2=10,
解得:AE=1,OE=3,
∴A的坐标为(3,1),
A点在双曲线上,
∴1=
k
3

∴k=3,
∴双曲线的解析式y=
3
x

B(m,-2)在双曲y=
3
x

∴-2=
3
m

解得:m=-
3
2

∴B的坐标是(-
3
2
,-2),
代入一次函数的解析式得:
3a+b=1
-
3
2
a+b=-2

解得:
a=
2
3
b=-1

故一次函数的解析式为:y=
2
3
x-1.

(2)∵y=
2
3
x-1,
当y=0时,x=
3
2

∴C(
3
2
,0),
∴OC=
3
2

∴S△AOC=
1
2
×
3
2
×1=
3
4

故S△AOC的值
3
4
点评:本题主要考查了锐角三角函数的定义,三角形的面积,用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,用待定系数法求正比例函数的解析式,勾股定理等知识点,综合运用这些知识进行计算是解此题的关键,题型较好,综合性比较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网