题目内容

5.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.

分析 根据角平分线的性质可得∠1=∠2,再根据平行线的性质可得∠1=∠F,由CE=CF,可得∠F=∠3,再利用等量代换可得∠2=∠3,进而可得判定AD∥BC,然后可得四边形ABCD是平行四边形.

解答 证明:∵∠BAD的平分线交直线BC于点E,
∴∠1=∠2,
∵AB∥CD,
∴∠1=∠F,
∵CE=CF,
∴∠F=∠3,
∴∠1=∠3,
∴∠2=∠3,
∴AD∥BC,
∵AB∥CD,
∴四边形ABCD是平行四边形.

点评 此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网