题目内容
1.| A. | α+β | B. | $\frac{α+β}{2}$ | C. | 180°-α-β | D. | $\frac{180°-α-β}{2}$ |
分析 连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,即2∠A+α+β=180°,再解方程即可.
解答
解:连结EF,如图,
∵四边形ABCD为圆的内接四边形,
∴∠ECD=∠A,
∵∠ECD=∠1+∠2,
∴∠A=∠1+∠2,
∵∠A+∠1+∠2+∠E+∠F=180°,
∴2∠A+α+β=180°,
∴∠A=$\frac{180°-α-β}{2}$.
故选D.
点评 本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.
练习册系列答案
相关题目
10.
如图所示,在正方形ABCD中,E为CD上一点,延长BC至F,使CF=CE,连接DF,BE与DF相交于点G,则下面结论错误的是( )
| A. | BE=DF | B. | BG⊥DF | C. | ∠F+∠CEB=90° | D. | ∠FDC+∠ABG=90° |
11.下列计算正确的是( )
| A. | $\sqrt{-16}$=-4 | B. | $\sqrt{16}$=±4 | C. | $\sqrt{(-4)^{2}}$=-4 | D. | $\root{3}{(-4)^{3}}$=-4 |