题目内容
1.下列各组长度中,能构成直角三角形的是( )| A. | 1,2,3 | B. | $\sqrt{2}$,$\sqrt{3}$,5 | C. | 5,6,7 | D. | 0.3,0.4,0.5 |
分析 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
解答 解:A、∵12+22≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
B、∵($\sqrt{2}$)2+($\sqrt{3}$)2≠52,∴该三角形符合勾股定理的逆定理,故不是直角三角形,故错误;
C、∵52+62≠72,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
D、∵0.32+0.42=0.52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;
故选D.
点评 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
练习册系列答案
相关题目
12.
某班要从甲、乙两名同学中选拔出一人,代表班级参加学校的一分钟踢毽子体能素质比赛,在一段时间内的相同条件下,甲、乙两人进行了六场一分钟踢毽子的选拔测试,根据他们的成绩绘制出如图的统计表和不完整的折线统计图.
甲、乙两人选拔测试成绩统计表
并计算出乙同学六场选拔测试成绩的方差:
S乙2=$\frac{(87-91)^{2}+(98-91)^{2}+(87-91)^{2}+(89-91)^{2}+(100-91)^{2}+(85-91)^{2}}{6}$=$\frac{101}{3}$
(1)m=90,n=88,并补全全图中甲、乙两人选拔测试成绩折线统计图;
(2)求甲同学六场选拔测试成绩的方差S甲2;
(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?
(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
甲、乙两人选拔测试成绩统计表
| 甲成绩 (次/min) | 乙成绩 (次/min) | |
| 第1场 | 87 | 87 |
| 第2场 | 94 | 98 |
| 第3场 | 91 | 87 |
| 第4场 | 85 | 89 |
| 第5场 | 91 | 100 |
| 第6场 | 92 | 85 |
| 中位数 | 91 | n |
| 平均数 | m | 91 |
S乙2=$\frac{(87-91)^{2}+(98-91)^{2}+(87-91)^{2}+(89-91)^{2}+(100-91)^{2}+(85-91)^{2}}{6}$=$\frac{101}{3}$
(1)m=90,n=88,并补全全图中甲、乙两人选拔测试成绩折线统计图;
(2)求甲同学六场选拔测试成绩的方差S甲2;
(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?
(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
6.甲、乙两种水稻试验田连续5年的平均单位面积产量如下:(单位:吨/公顷)
(1)哪种水稻的平均单位面积产量比较高?
(2)哪种水稻的产量比较稳定.
| 品种 | 第1年 | 第2年 | 第3年 | 第4年 | 第5 年 |
| 甲 | 9.8 | 9.9 | 10.1 | 10 | 10.2 |
| 乙 | 9.4 | 10.3 | 10.8 | 9.7 | 9.8 |
(2)哪种水稻的产量比较稳定.
11.为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.
(1)求出以上表格中a=31,b=51;
(2)计算该2路公共汽车平均每班的载客量是多少?
| 载客量/人 | 组中值 | 频数(班次) |
| 1≤x<21 | 11 | 2 |
| 21≤x<41 | a | 8 |
| 41≤x<61 | b | 20 |
(2)计算该2路公共汽车平均每班的载客量是多少?