ÌâÄ¿ÄÚÈÝ
11£®Èçͼ1£¬ÔÚ¡÷ABCÖУ®¡ÏC=90¡ã£¬AC£¾BC£¬Õý·½ÐÎCDEFµÄ¶¥µãDÔÚ±ßACÉÏ£¬µãFÔÚÉäÏßCBÉÏÉèCD=x£¬Õý·½ÐÎCDEFÓë¡÷ABCÖØµþ²¿·ÖµÄÃæ»ýΪS£¬S¹ØÓÚxµÄº¯ÊýͼÏóÈçͼ2Ëùʾ£¨ÆäÖÐ0£¼x¡Üm£¬m£¼x¡Ü2£¬2£¼x¡Ünʱ£¬º¯ÊýµÄ½âÎöʽ²»Í¬£©£®£¨1£©Ìî¿Õ£ºmµÄֵΪ$\frac{3}{2}$£»
£¨2£©ÇóS¹ØÓÚxµÄº¯Êý½âÎöʽ£¬²¢Ð´³öxµÄȡֵ·¶Î§£»
£¨3£©SµÄÖµÄÜ·ñΪ$\frac{13}{2}$£¿ÈôÄÜ£¬Ö±½Óд³ö´ËʱxµÄÖµ£»Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©µ±0£¼x¡Ümʱ£¬½áºÏͼÐοÉÖªS=x2£¬°Ñµã£¨m£¬$\frac{9}{4}$£©´úÈë¿ÉÇóµÃmµÄÖµ£»
£¨2£©½áºÏͼÐεı任¿ÉÖªµ±m£¼x¡Ü2ʱ£¬µãFÔ˶¯µ½µãB£¬¿ÉÇóµÃBC£¬µ±x=mʱ£¬¿ÉµÃ¡÷BEF¡×¡÷BAC£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊ¿ÉÇóµÃACµÄ³¤£¬µ±m£¼x¡Ü2£¬ÉèAB·Ö±ð½»DE¡¢EFÓÚµãP¡¢QÁ½µã£¬¿ÉÓÃx·Ö±ð±íʾ³öPEºÍQE£¬S=SÕý·½ÐÎCDEF-S¡÷PEQ£¬¿ÉµÃµ½SÓëxµÄ¹ØÏµÊ½£¬µ±2£¼x¡Ünʱ£¬ÉèAB½»DEÓÚµãH£¬¿ÉÓÃx±íʾ³öAPºÍPH£¬ÔòÓÐS=S¡÷ABC-S¡÷APH£¬¿ÉµÃµ½SÓëxµÄ¹ØÏµÊ½£¬´Ó¶ø¿ÉÇóµÃº¯Êý½âÎöʽ£»
£¨3£©ÀûÓã¨2£©ÖÐËùÇóµÃ¹ØÏµÊ½£¬·Ö±ðÁîS=$\frac{13}{2}$£¬½âÏàÓ¦µÄ·½³Ì½øÐÐÅжϼ´¿É£®
½â´ð ½â£º£¨1£©µ±0£¼x¡Ümʱ£¬Èçͼ1£¬![]()
Ôò¿ÉÖªµãF´ÓCµãÔ˶¯µ½µãEÔ˶¯µ½ABÉÏ£¬
¡àS=x2£¬
¡ßµã£¨m£¬$\frac{9}{4}$£©ÔÚº¯ÊýͼÏóÉÏ£¬
¡àm2=$\frac{9}{4}$£¬½âµÃm=$\frac{3}{2}$»òm=-$\frac{3}{2}$£¨ÉáÈ¥£©£¬
¹Ê´ð°¸Îª£º$\frac{3}{2}$£»
£¨2£©µ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬¿ÉÖªµãF´ÓEµãÔÚABÉÏÔ˶¯µ½Bµã£¬
¡àBC=2£¬
ÔÚͼ1ÖУ¬ÓÉEF¡ÎAC£¬
¡à¡÷BEF¡×¡÷BAC£¬
¡à$\frac{BF}{BC}$=$\frac{EF}{AC}$£¬ÇÒCF=EF=$\frac{3}{2}$£¬BF=BC-CF=2-$\frac{3}{2}$=$\frac{1}{2}$£¬
¡à$\frac{\frac{1}{2}}{2}$=$\frac{\frac{3}{2}}{AC}$£¬½âµÃAC=6£¬
¢Ùµ±0£¼x¡Ü$\frac{3}{2}$ʱ£¬ÓÉ£¨1£©¿ÉÖªS=x2£»
¢Úµ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬ÉèAB·Ö±ð½»DE¡¢EFÓÚµãP¡¢QÁ½µã£¬Èçͼ2£¬![]()
µ±CD=CF=DE=EF=xʱ£¬BF=2-x£¬AD=6-x£¬
¡ßEF¡ÎAC£¬
¡à$\frac{BF}{BC}$=$\frac{FQ}{AC}$£¬¼´$\frac{2-x}{2}$=$\frac{FQ}{6}$£¬
¡àFQ=3£¨2-x£©£¬
¡àQE=EF-FQ=x-3£¨2-x£©=4x-6£¬
ͬÀí¿ÉµÃ$\frac{PD}{BC}$=$\frac{AD}{AC}$£¬¼´$\frac{PD}{2}$=$\frac{6-x}{6}$£¬
¡àPD=$\frac{1}{3}$£¨6-x£©£¬
¡àPE=DE-PD=x-$\frac{1}{3}$£¨6-x£©=$\frac{1}{3}$£¨4x-6£©£¬
¡àS¡÷PEQ=$\frac{1}{2}$PE•PQ=$\frac{1}{2}$¡Á$\frac{1}{3}$£¨4x-6£©•£¨4x-6£©=$\frac{1}{6}$£¨4x-6£©2£¬
¡àS=SÕý·½ÐÎCDEF-S¡÷PEQ=x2-$\frac{1}{6}$£¨4x-6£©2=-$\frac{5}{3}$x2+8x-6£»
¢Ûµ±2£¼x¡Ü6ʱ£¬¼´µãF´ÓBµãÔ˶¯µ½Ê¹A¡¢DÖØºÏ£¬ÉèAB½»DEÓÚµãH£¬Èçͼ3£¬![]()
µ±CD=xʱ£¬ÔòAD=6-x£¬
ͬÀí¿ÉµÃ$\frac{DH}{BC}$=$\frac{AD}{AC}$£¬¼´$\frac{DH}{2}$=$\frac{6-x}{6}$£¬
¡àDH=$\frac{1}{3}$£¨6-x£©£¬
¡àS¡÷ADH=$\frac{1}{2}$DH•AD=$\frac{1}{2}$¡Á$\frac{1}{3}$£¨6-x£©•£¨6-x£©=$\frac{1}{6}$£¨6-x£©2£¬ÇÒS¡÷ABC=$\frac{1}{2}$AC•BC=6£¬
¡àS=S¡÷ABC-S¡÷APH=6-$\frac{1}{6}$£¨6-x£©2=-$\frac{1}{6}$x2+2x£»
×ÛÉÏ¿ÉÖªS=$\left\{\begin{array}{l}{{x}^{2}£¨0£¼x£¼\frac{3}{2}£©}\\{-\frac{5}{3}{x}^{2}+8x-6£¨\frac{3}{2}£¼x¡Ü2£©}\\{-\frac{1}{6}{x}^{2}+2x£¨2£¼x¡Ü6£©}\end{array}\right.$£¬ÇÒ0£¼x¡Ü6£»
£¨3£©ÈôS=$\frac{13}{2}$£¬ÔòÓÐÈýÖÖÇé¿ö£¬
¢Ùµ±x2=$\frac{13}{2}$ʱ£¬Ôòx=¡À$\frac{\sqrt{26}}{2}$£¬µ±x=-$\frac{\sqrt{26}}{2}$ʱÏÔÈ»²»Âú×ãÌõ¼þ£¬µ±x=$\frac{\sqrt{26}}{2}$ʱ£¬$\frac{\sqrt{26}}{2}$£¾$\frac{3}{2}$£¬Ò²²»Âú×ãÌõ¼þ£»
¢Úµ±-$\frac{5}{3}$x2+8x-6=$\frac{13}{2}$ʱ£¬ÕûÀí¿ÉµÃ10x2-48x+75=0£¬¸Ã·½³ÌÅбðʽ¡÷=482-4¡Á10¡Á75£¼0£¬¼´¸Ã·½³ÌÎÞʵÊý½â£»
¢Ûµ±-$\frac{1}{6}$x2+2x=$\frac{13}{2}$ʱ£¬ÕûÀí¿ÉµÃx2-12x+39=0£¬¸Ã·½³ÌÅбðʽ¡÷=122-4¡Á39£¼0£¬¼´¸Ã·½³ÌÎÞʵÊý½â£»
×ÛÉÏ¿ÉÖªSµÄÖµ²»ÄÜΪ$\frac{13}{2}$£®
µãÆÀ ±¾ÌâΪËıßÐεÄ×ÛºÏÓ¦Óã¬É漰֪ʶµãÓÐÕý·½ÐεÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³Ì¼°·ÖÀàÌÖÂ۵ȣ®È·¶¨³öÕý·½ÐÎËùÔ˶¯µ½µÄλÖÃÓë¶ÔÓ¦µÄº¯ÊýͼÏóÖжÔÓ¦µÄµãÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©¡¢£¨3£©ÖÐÈ·¶¨³öACºÍBCµÄ³¤ÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÌرðÊǵڣ¨2£©ÎÊÄѶȽϴó£®
| A£® | µãP£ºO-A-D-C£¬µãQ£ºO-C-D-O | B£® | µãP£ºO-A-D-O£¬µãQ£ºO-C-B-O | ||
| C£® | µãP£ºO-A-B-C£¬µãQ£ºO-C-D-O | D£® | µãP£ºO-A-D-O£¬µãQ£ºO-C-D-O |