题目内容

20.如图,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角.

①如图1,若α+β>180°,求∠P的度数.(用α、β的代数式表示)
②如图2,若α+β<180°,请在图③中画出∠P,并求得∠P=90°-$\frac{1}{2}$(α+β).(用α、β的代数式表示)

分析 (1)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠PBC+(180°-2∠DCP)=180°-2(∠DCF-∠FBC)=180°-2∠P,从而得出结论;
(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠GBC+(180°-2∠HCE)=180°+2(∠GBC-∠HCE)=180°+2∠P,从而得出结论;

解答 解:(1)∵∠ABC+∠DCB=360°-(α+β),
∴∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCP)=180°-2(∠DCP-∠FBC)=180°-2∠P,
∴360°-(α+β)=180°-2∠P,
2∠P=α+β-180°,
∴∠P=$\frac{1}{2}$(α+β)-90°;

(2)∵∠ABC+∠DCB=360°-(α+β),
∴∠ABC+(180°-∠DCE)=360°-(α+β)=2∠GBC+(180°-2∠HCE)=180°+2(∠GBC-∠HCE)=180°+2∠P,
∴360°-(α+β)=180°+2∠P,
∴∠P=90°-$\frac{1}{2}$(α+β);
故答案为:90°-$\frac{1}{2}$(α+β).

点评 本题考查了多边形内角与外角和角平分线的定义,(1)中得出360°-(α+β)=180°-2∠P,(2)中得出360°-(α+β)=180°+2∠P是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网