题目内容

15.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为$\frac{25}{8}$.

分析 如图连接CD、OD、OC,延长DO交AC于E,设半径为R,先证明DE⊥AC,DE=$\frac{1}{2}$CB,在RT△OCE中,利用勾股定理即可解决问题.

解答 解:如图连接CD、OD、OC,延长DO交AC于E,设半径为R.
在RT△ABC中,∵∠ACB=90°,BC=8,AC=6,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵BD=AD=5,
∴CD=AD=5
∵DC=DA,
$\widehat{CD}$=$\widehat{AD}$,
∴DO⊥AC,EC=AE=3,
∴ED∥BC,∵BD=AD,
∴EC=EA,
∴DE=$\frac{1}{2}$BC=4,
在RT△COE中,∵∠OEC=90°,
∴CO2=OE2+CE2
∴R2=(4-R)2+32
∴R=$\frac{25}{8}$.

点评 本题考查点与圆的位置关系,三角形的中位线的性质,垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网