题目内容

在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,连接AC、EF,证明:△ABC∽△AEF.
考点:相似三角形的判定,平行四边形的性质
专题:证明题
分析:根据平行四边形的性质得出AB∥CD,进而得出∠B=∠EAF,根据平行四边形的性质得出∠B=∠D,再利用∠AEB=∠AFD=90°,得出△ABE∽△ADF,即可得出
AB
AE
=
BC
AF
,即可得出△ABC∽△EAF.
解答:证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠AFD=90°,
∵∠B+∠BAE=90°,∠EAF+∠BAE=90°,
∴∠B=∠EAF,
∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
AB
AE
=
AD
AF

∵AD=BC,
AB
AE
=
BC
AF

∴△ABC∽△EAF,
点评:此题主要考查了相似三角形的判定与性质以及平行四边形的性质等知识,根据已知得出∠B=∠EAF是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网