题目内容
4.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,
①求证;△ABD≌△ACE;
②求∠BCE的度数.
(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.
分析 (1)①根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE即可;
②问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;
(2)问在第(1)问的基础上,将α+β转化成三角形的内角和.
解答 解:(1)①∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS);
②∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAD+∠DAC=∠EAC+∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°
点评 本题考查的是等腰三角形的性质,涉及到三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.
| A. | 17cm | B. | 16cm | C. | 4cm | D. | 5cm |
| A. | 8% | B. | 18% | C. | 20% | D. | 25% |
| A. | m=1,n=-2 | B. | m=-1,n=2 | C. | m=-1,n=-2 | D. | m=1,n=2 |
| A. | 学校离家的距离为1000米 | |
| B. | 修车时间为5分钟 | |
| C. | 到达学校时共用时间20分钟 | |
| D. | 修车后小明骑车的速度是修车前速度的2倍 |
| A. | 3 | B. | 4 | C. | -2 | D. | 6 |