题目内容
18.分析 设AC=3x,BC=2x,得到AB=5x,根据点M是AB的中点,点N是BC的中点,列方程即可得到结论.
解答 解:∵AC:BC=3:2,
∴设AC=3x,BC=2x,
∴AB=5x,
∵点M是AB的中点,点N是BC的中点,
∴BM=2.5x,BN=x,
∴MN=BM-BN=1.5x=3,
∴x=2,
∴AB=10cm.
点评 本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
练习册系列答案
相关题目
6.
某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
(1)如果y是t的函数,
①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;

②当t为何值时,乒乓球达到最大高度?
(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?
| t(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | … |
| x(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
| y(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;
②当t为何值时,乒乓球达到最大高度?
(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?
10.-$\frac{1}{2016}$的倒数是( )
| A. | 2016 | B. | -2016 | C. | -$\frac{1}{2016}$ | D. | $\frac{1}{2016}$ |