题目内容

8.某天,小明来到体育馆看球赛,进场时,发现门票忘在家里,此时离比赛开始还有25分钟,于是他立即步行回家取票,与此同时,小明爸爸从家里出发,骑自行车以3倍于他的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆,图中线段AB、OB分别表示父子俩在送票、取票过程中各自离体育馆的路程s(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标并说明其实际意义;
(2)小明能否在比赛开始前到达体育馆?请说明理由.

分析 (1)从图象可以看出,父子俩从出发到相遇花费了15分钟,路程是3600米,可以求出父子俩的速度,B点的纵坐标便可以求出;
(2)利用待定系数法便可以求出AB的解析式,从第一问中已经知道路程和速度求出父子俩赶回体育馆的时间就知道能否在比赛开始前到达体育馆了.

解答 解:(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟;
设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分
依题意得:15x+45x=3600 
解得:x=60
所以两人相遇处离体育馆的距离为60×15=900米
所以点B的坐标为(15,900),表示为15分钟父子俩离体育馆的距离为900米;

(2)设直线AB的函数关系式为s=kt+b(k≠0)(4分)
由题意,直线AB经过点A(0,3600)、B(15,900)
得:$\left\{\begin{array}{l}{b=3600}\\{15k+b=900}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-180}\\{b=3600}\end{array}\right.$,
直线AB的函数关系式为:S=-180t+3600;
在S=-180t+3600中,令S=0,得0=-180t+3600
解得:t=20
即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟,
∵20<25,
∴小明能在比赛开始前到达体育馆.

点评 此题考查一次函数的实际运用,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网