题目内容
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(图1),后人称其为“赵爽弦图”,由弦图变化得到图2,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则S2的值为 .

考点:勾股定理的证明
专题:
分析:根据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.
解答:解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=12,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=12,故3x+12y=12,
x+4y=4,
所以S2=x+4y=4.
故答案为:4.
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=12,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=12,故3x+12y=12,
x+4y=4,
所以S2=x+4y=4.
故答案为:4.
点评:此题主要考查了图形面积关系,根据已知用x,y表示出S1,S2,S3,再利用S1+S2+S3=12求出是解决问题的关键.
练习册系列答案
相关题目
在十二点三十分时,钟表上的时针与分针所成的角( )
| A、直角 | B、钝角 | C、平角 | D、锐角 |