题目内容

3.解方程组:
(1)$\left\{\begin{array}{l}{x+y=2}\\{x-y=4}\end{array}\right.$                
(2)$\left\{\begin{array}{l}{y=2x-1}\\{3x-y=3}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用代入消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x+y=2①}\\{x-y=4②}\end{array}\right.$,
①+②得:2x=6,即x=3,
把x=3代入①得:y=-1,
则方程组的解$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{y=2x-1①}\\{3x-y=3②}\end{array}\right.$,
把①代入②得:3x-2x+1=3,即x=2,
把x=2代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网