题目内容

8.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=$\frac{1}{2}$,OB=4,OE=2.
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.

分析 (1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.

解答 解:(1)∵OB=4,OE=2,
∴BE=2+4=6.
∵CE⊥x轴于点E,tan∠ABO=$\frac{AO}{BO}$=$\frac{CE}{BE}$=$\frac{1}{2}$.
∴OA=2,CE=3.
∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(-2,3).
设直线AB的解析式为y=kx+b,则$\left\{\begin{array}{l}{0+b=2}\\{4k+b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$.
故直线AB的解析式为y=-$\frac{1}{2}$x+2.
设反比例函数的解析式为y=$\frac{m}{x}$(m≠0),
将点C的坐标代入,得3=$\frac{m}{-2}$,
∴m=-6.
∴该反比例函数的解析式为y=-$\frac{6}{x}$.

(2)联立反比例函数的解析式和直线AB的解析式可得$\left\{\begin{array}{l}{y=-\frac{6}{x}}\\{y=-\frac{1}{2}x+2}\end{array}\right.$,
可得交点D的坐标为(6,-1),
则△BOD的面积=4×1÷2=2,
△BOC的面积=4×3÷2=6,
故△OCD的面积为2+6=8.

点评 本题是一次函数与反比例函数的综合题.主要考查待定系数法求函数解析式.求A、B、C点的坐标需用正切定义或相似三角形的性质,起点稍高,部分学生感觉较难.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网