题目内容
13.分析 连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.
解答
解:连接OQ,
∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋转的性质可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1:$\sqrt{3}$,
设BO=1,OA=$\sqrt{3}$,
∴AQ=1,则tan∠AQO=$\frac{AO}{AQ}$=$\sqrt{3}$,
∴∠AQO=60°,
∴∠AQC=105°.
点评 本题主要考查了图形旋转的性质,特殊角直角三角形的边角关系,掌握图形旋转的性质,熟记特殊直角三角形的边角关系是解决问题的关键.
练习册系列答案
相关题目
4.
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
| A. | $\frac{18}{5}$ | B. | $\frac{5}{2}$ | C. | $\frac{24}{5}$ | D. | $\frac{9}{5}$ |
18.
如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是( )
| A. | 60° | B. | 48° | C. | 30° | D. | 24° |
2.
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |