题目内容

18.如图,正方形ABCD的边CD与正方形CEFG的边CE重合,点O是EG的中点,∠CGE的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:
①GH⊥BE;
②HO∥BG,HO=$\frac{1}{2}$BG;
③点H不在正方形CGFE的外接圆上;
④△GBE∽△GMF.
其中结论正确的个数是(  )
A.1个B.2个C.3个D.4个

分析 (1)由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;
(2)由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG,$HO=\frac{1}{2}BG$;
(3)△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上;
(4)连接CF,由点H在正方形CGFE的外接圆上,得到∠HFC=∠CGH,由∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,得出∠FMG=∠GBE,所以△GBE∽△GMF.

解答 解:(1)如图1,

∵四边形ABCD和四边形CGFE是正方形,
∴BC=CD,CE=CG,∠BCE=∠DCG,
在△BCE和△DCG中,
$\left\{\begin{array}{l}{BD=CD}\\{∠BCE=∠DCG}\\{CE=CG}\end{array}\right.$,
∴△BCE≌△DCG(SAS),
∴∠BEC=∠BGH,
∵∠BGH+∠CDG=90°,∠CDG=∠HDE,
∴∠BEC+∠HDE=90°,
∴GH⊥BE.
故①正确;
(2)∵GH是∠EGC的平分线,
∴∠BGH=∠EGH,
在△BGH和△EGH中,
$\left\{\begin{array}{l}{∠BGH=∠EGH}\\{GH=GH}\\{∠GHB=∠GHE}\end{array}\right.$,
∴△BGH≌△EGH(ASA),
∴BH=EH,
又∵O是EG的中点,
∴HO是△EBG的中位线,
∴HO∥BG,HO=$\frac{1}{2}$BG,
故②正确;
(3)由(1)得△EHG是直角三角形,
∵O为EG的中点,
∴OH=OG=OE,
∴点H在正方形CGFE的外接圆上,
故③错误;
(4)如图2,连接CF,

由(3)可得点H在正方形CGFE的外接圆上,
∴∠HFC=∠CGH,
∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,
∴∠FMG=∠GBE,
又∵∠EGB=∠FGM=45°,
∴△GBE∽△GMF.
故④正确,
故选:C.

点评 本题主要考查了四边形的综合题,解题的关键是能灵活利用三角形全等的判定和性质来解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网