ÌâÄ¿ÄÚÈÝ
2£®¶Ôx£¬y¶¨ÒåÒ»ÖÖÐÂÔËËãT£¬¹æ¶¨£ºT£¨x£¬y£©=ax+2by-1£¨ÆäÖÐa¡¢b¾ùΪ·ÇÁã³£Êý£©£¬ÕâÀïµÈʽÓÒ±ßÊÇͨ³£µÄËÄÔòÔËË㣬ÀýÈ磺T£¨0£¬1£©=a•0+2b•1-1=2b-1£®£¨1£©ÒÑÖªT£¨1£¬-1£©=-2£¬T£¨4£¬2£©=3£®
¢ÙÇóa£¬bµÄÖµ£»
¢ÚÈô¹ØÓÚmµÄ²»µÈʽ×é$\left\{\begin{array}{l}{T£¨2m£¬5-4m£©¡Ü4}\\{T£¨m£¬3-2m£©£¾p}\end{array}\right.$Ç¡ºÃÓÐ2¸öÕûÊý½â£¬ÇóʵÊýpµÄȡֵ·¶Î§£»
£¨2£©ÈôT£¨x£¬y£©=T£¨y£¬x£©¶ÔÈÎÒâʵÊýx£¬y¶¼³ÉÁ¢£¨ÕâÀïT£¨x£¬y£©ºÍT£¨y£¬x£©¾ùÓÐÒâÒ壩£¬Ôòa£¬bÓ¦Âú×ãÔõÑùµÄ¹ØÏµÊ½£¿
·ÖÎö £¨1£©¢Ù¸ù¾Ý¶¨ÒåµÄÐÂÔËËãT£¬Áгö¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×éÇó³öa£¬bµÄÖµ£»
¢Ú¸ù¾Ý£¨1£©Çó³öµÄa£¬bµÄÖµºÍÐÂÔËËãÁгö·½³Ì×éÇó³ömµÄȡֵ·¶Î§£¬¸ù¾ÝÌâÒâÁгö²»µÈʽ£¬½â²»µÈʽÇó³öʵÊýpµÄȡֵ·¶Î§£»
£¨2£©¸ù¾ÝÐÂÔËËãÁгöµÈʽ£¬¸ù¾Ýx£¬yµÄϵÊýΪ0£¬Çó³öa£¬bÓ¦Âú×ãµÄ¹ØÏµÊ½£®
½â´ð ½â£º£¨1£©¢Ù$\left\{\begin{array}{l}{a-2b-1=-2}\\{4a+4b-1=3}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{a=\frac{1}{3}}\\{b=\frac{2}{3}}\end{array}\right.$£»
¢Ú$\left\{\begin{array}{l}{\frac{2m}{3}+\frac{4£¨5-4m£©}{3}-1¡Ü4}\\{\frac{m}{3}+\frac{4£¨3-2m£©}{3}-1£¾p}\end{array}\right.$£¬
½âµÃ$\frac{5}{14}$¡Üm£¼$\frac{9-3p}{7}$£¬
ÒòΪԲ»µÈʽ×éÓÐ2¸öÕûÊý½â£¬
ËùÒÔ2£¼$\frac{9-3p}{7}$¡Ü3£¬
½âµÃ£¬-4¡Üp£¼-$\frac{5}{3}$£»
£¨2£©T£¨x£¬y£©=ax+2by-1£¬T£¨y£¬x£©=ay+2bx-1£¬
ËùÒÔax+2by-1=ay+2bx-1£¬
ËùÒÔ£¨a-2b£©£¨x-y£©=0
ËùÒÔa=2b£®
µãÆÀ ±¾Ì⿼²éµÄÊǶþÔªÒ»´Î·½³Ì×éµÄ½â·¨¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨ºÍÒ»ÔªÒ»´Î²»µÈʽ×éµÄÕûÊý½âµÄÈ·¶¨£¬ÕÆÎÕ¶þÔªÒ»´Î·½³Ì×éµÄ½â·¨¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨ÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 4£¬2 | B£® | 2£¬4 | C£® | -4£¬-2 | D£® | -2£¬-4 |
| A£® | Èô¡Ï1+¡Ï2=180¡ã£¬Ôòl1¡Îl2 | B£® | Èô¡Ï2=¡Ï3£¬Ôòl1¡Îl2 | ||
| C£® | Èô¡Ï1+¡Ï2+¡Ï3=180¡ã£¬Ôòl1¡Îl2 | D£® | Èô¡Ï2+¡Ï4=180¡ã£¬Ôòl1¡Îl2 |