ÌâÄ¿ÄÚÈÝ
13£®Ò»¿éשµÄÖÊÁ¿Îªm£¬Ìå»ýΪV£¬·Ö³É´óС²»µÈµÄÁ½¿é£¬ÖÊÁ¿·Ö±ðΪm1£¬m2£¨m1£¾m2£©£¬Ìå»ý·Ö±ðΪV1£¬V2£¬Ôò£¨¡¡¡¡£©| A£® | $\frac{m}{V}$=$\frac{{m}_{1}}{{V}_{1}}$=$\frac{{m}_{2}}{{V}_{2}}$ | B£® | $\frac{m}{V}$£¾$\frac{{m}_{1}}{{V}_{1}}$£¾$\frac{{m}_{2}}{{V}_{2}}$ | ||
| C£® | $\frac{{m}_{1}}{{V}_{1}}$=$\frac{{m}_{2}}{{V}_{2}}$¡Ü$\frac{m}{V}$ | D£® | $\frac{{m}_{2}}{{V}_{2}}$=$\frac{{m}_{1}}{{V}_{1}}$¡Ý$\frac{m}{V}$ |
·ÖÎö ¸ù¾ÝÃܶÈÏàµÈÁгö·Öʽ½â´ð¼´¿É£®
½â´ð ½â£º¸ù¾ÝÌâÒâ¿ÉµÃ£º$\frac{m}{V}=\frac{{m}_{2}}{{V}_{1}}=\frac{m}{{V}_{2}}$£¬
¹ÊÑ¡A£®
µãÆÀ ´ËÌ⿼²é·ÖʽµÄ´úÊýʽÎÊÌ⣬¹Ø¼üÊǸù¾ÝÏàͬÎïÖʵÄÃܶÈÏàµÈÁгö´úÊýʽ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®Éè¶þ´Îº¯Êýy=-x2+x+b£¨b£¾0£©£¬µ±×Ô±äÁ¿Îªmʱ£¬Æäº¯ÊýÖµ´óÓÚ0£»µ±×Ô±äÁ¿Îªm-1¡¢m+1ʱ£¬Æäº¯ÊýÖµ·Ö±ðΪy1£¬y2£¬Ôò£¨¡¡¡¡£©
| A£® | y1£¾0£¬y2£¾0 | B£® | y1£¾0£¬y2£¼0 | C£® | y1£¼0£¬y2£¾0 | D£® | y1£¼0£¬y2£¼0 |
18£®ÏÂÁбäÐÎÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | 4x-5=3x+2±äÐεà 4x-3x=2-5 | B£® | $\frac{2}{3}x=\frac{3}{2}$±äÐεÃx=1 | ||
| C£® | 3£¨x-1£©=2£¨x+3£©±äÐεÃ3x-1=2x+6 | D£® | $\frac{x-1}{2}-\frac{x}{5}=1$±äÐεÃ3x=15 |
5£®ÒÑÖªÔÚRt¡÷ABCÖУ¬ADÊÇб±ßÉϵĸߣ¬BC=3AC£¬ÄÇô¡÷ABDµÄÃæ»ýÓë¡÷CBAµÄÃæ»ýµÄ±ÈÊÇ£¨¡¡¡¡£©
| A£® | 1£º3 | B£® | 3£º9 | C£® | 8£º1 | D£® | 8£º9 |