题目内容
考点:角平分线的定义
专题:
分析:用∠AOC表示出∠AOB的度数,再根据角平分线的定义得出∠AOD的度数,根据∠COD=∠AOD-∠AOC即可得出结论.
解答:解:∵∠BOC=2∠AOC,
∴∠AOB=∠BOC+∠AOC=3∠AOC.
∵OD平分∠AOB,
∴∠AOD=
∠AOB=
∠AOC,
∵∠COD=25°,
∴∠COD=∠AOD-∠AOC=
∠AOC-∠AOC=
∠AOC=25°,解得∠AOC=50°.
∴∠AOB=∠BOC+∠AOC=3∠AOC.
∵OD平分∠AOB,
∴∠AOD=
| 1 |
| 2 |
| 3 |
| 2 |
∵∠COD=25°,
∴∠COD=∠AOD-∠AOC=
| 3 |
| 2 |
| 1 |
| 2 |
点评:本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.
练习册系列答案
相关题目
已知圆的半径是R,则圆内接正十边形的边长是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|