题目内容

12.如图,已知?ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.

分析 由平行四边形的性质得出AD∥BC,∠BAD=∠BCD,证出∠DAE=∠AEB,由已知条件得出∠DAE=∠FCB=∠AEB,证出AE∥FC,得出四边形AECF为平行四边形,即可得出结论.

解答 证明:∵四边形ABCD为平行四边形,
∴AD∥BC∠BAD=∠BCD,
∴AF∥EC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,CF平分∠BCD,
∴∠DAE=∠BAD,∠FCB=∠BCD,
∴∠DAE=∠FCB=∠AEB,
∴AE∥FC,
∴四边形AECF为平行四边形,
∴AF=CE.

点评 本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网