ÌâÄ¿ÄÚÈÝ
14£®Çó²»µÈʽ£¨2x-1£©£¨x+3£©£¾0µÄ½â¼¯£¬ÎÒÃǸù¾Ý¡°Í¬ºÅÁ½ÊýÏà³Ë£¬»ýΪÕý¡±¿ÉµÃ£¬¢Ù$\left\{\begin{array}{l}{2x-1£¾0}\\{x+3£¾0}\end{array}\right.$»ò¢Ú$\left\{\begin{array}{l}{2x-1£¼0}\\{x+3£¼0}\end{array}\right.$£®
½â¢ÙµÃx£¾$\frac{1}{2}$£»½â¢ÚµÃx£¼-3£®
¡à²»µÈʽµÄ½â¼¯Îªx£¾$\frac{1}{2}$ »òx£¼-3£®
ÇëÄã·ÂÕÕÉÏÊö·½·¨£¬Çó²»µÈʽ£¨x+1£©£¨x-1£©£¼0µÄ½â¼¯Îª-1£¼x£¼1£®
·ÖÎö ¸ù¾ÝÌâÒâ¿ÉµÃ³ö¹ØÓÚxµÄ²»µÈʽ×飬Çó³öxµÄȡֵ·¶Î§¼´¿É£®
½â´ð ½â£º¡ß£¨x+1£©£¨x-1£©£¼0£¬
¡à¢Ù$\left\{\begin{array}{l}x+1£¾0\\ x-1£¼0\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}x+1£¼0\\ x-1£¾0\end{array}\right.$£¬
½â¢ÙµÃ£¬-1£¼x£¼1£»½â¢ÚµÃxÎ޽⣮
¡à²»µÈʽµÄ½â¼¯Îª£º-1£¼x£¼1£®
¹Ê´ð°¸Îª£º-1£¼x£¼1£®
µãÆÀ ±¾Ì⿼²éµÄÊǽâÒ»ÔªÒ»´Î²»µÈʽ×飬ÊìÖª¡°Í¬´óÈ¡´ó£»Í¬Ð¡È¡Ð¡£»´óСС´óÖмäÕÒ£»´ó´óССÕÒ²»µ½¡±µÄÔÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÒÑÖªA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©ºÍC£¨x3£¬y3£©ÔÚÖ±Ïßy=-$\frac{1}{2}$x+$\sqrt{3}$ÉÏ£®Èôx1£¼x2£¼x3£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | y1£¼y2£¼y3 | B£® | y1£¼y3£¼y2 | C£® | y3£¼y1£¼y2 | D£® | y3£¼y2£¼y1 |
5£®º¯Êýy=$\sqrt{x}$ÖеÄ×Ô±äÁ¿xµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | x¡Ý0 | B£® | x¡Ü0 | C£® | x£¾0 | D£® | x=0 |
2£®Å×ÎïÏßy=-3x2+2x-lµÄͼÏóÓë×ø±êÖá½»µãµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | ûÓн»µã | B£® | Ö»ÓÐÒ»¸ö½»µã | C£® | Á½¸ö½»µã | D£® | Èý¸ö½»µã |
9£®ÏÂÁи÷ʽÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | £¨a+4£©£¨a-4£©=a2-4 | B£® | £¨5x-1£©£¨1-5x£©=25x2-1 | ||
| C£® | £¨-3x+2£©2=4-12x+9x2 | D£® | £¨x-3£©£¨x-9£©=x2-27 |
19£®ÔÚRt¡÷ABCÖУ¬¡ÏB=90¡ã£¬¡ÏC=30¡ã£¬AC=2£¬ÔòABµÄ³¤Îª£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $\sqrt{5}$ |
6£®
ÈçͼAB¡ÎCD£¬¡ÏBAE=120¡ã£¬¡ÏEDC=45¡ã£¬Ôò¡ÏE=£¨¡¡¡¡£©
| A£® | 105¡ã | B£® | 115¡ã | C£® | 120¡ã | D£® | 165¡ã |