ÌâÄ¿ÄÚÈÝ
3£®ÔĶÁÀí½â£º¶ÔÓÚ¶àÏîʽx2+2ax+a2¿ÉÒÔÖ±½ÓÓù«Ê½·¨·Ö½âΪ£¨x+a£©2µÄÐÎʽ£¬µ«¶ÔÓÚ¶àÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÓù«Ê½·¨ÁË£¬ÎÒÃÇ¿ÉÒÔ¸ù¾Ý¶àÏîʽµÄÌØµã£¬ÔÚx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬ÔÙ¼õÈ¥a2ÕâÏʹÕû¸öʽ×ÓµÄÖµ²»±ä£®½âÌâ¹ý³ÌÈçÏ£º
x2+2ax-3a2=x2+2ax-3a2+a2-a2£¨µÚÒ»²½£©
=x2+2ax+a2-a2-3a2£¨µÚ¶þ²½£©
=£¨x+a£©2-£¨2a£©2£¨µÚÈý²½£©
=£¨x+3a£©£¨x-a£©£¨µÚËIJ½£©
²ÎÕÕÉÏÊö²ÄÁÏ£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÉÏÊöÒòʽ·Ö½âµÄ¹ý³Ì£¬´ÓµÚ¶þ²½µ½µÚÈý²½£¬Óõ½ÁËÄÄÖÖÒòʽ·Ö½âµÄ·½·¨D
A£®ÌṫÒòʽ·¨ B£®Æ½·½²î¹«Ê½·¨
C£®Íêȫƽ·½¹«Ê½·¨ D£®Ã»ÓÐÒòʽ·Ö½â
£¨2£©´ÓµÚÈý²½µ½µÚËIJ½Óõ½µÄÊÇÄÄÖÖÒòʽ·Ö½âµÄ·½·¨£ºÆ½·½²î¹«Ê½·¨
£¨3£©Çë²ÎÕÕÉÏÊö·½·¨°Ñm2-6mn+8n2Òòʽ·Ö½â£®
·ÖÎö £¨1£©¸ù¾ÝÒòʽ·Ö½â¶¨ÒåÅжϼ´¿É£»
£¨2£©²ÎÕÕÆ½·½²î¹«Ê½¼´¿ÉµÃÖª£»
£¨3£©Àà±ÈÌâ¸É·½·¨£¬ÔʽÅäÉÏn2ÒÔ¹¹³ÉÍêȫƽ·½Ê½£¬ÔÙÓÃÆ½·½²î¹«Ê½·Ö½â¼´¿É£®
½â´ð ½â£º£¨1£©¸ù¾ÝÒòʽ·Ö½âµÄ¶¨Ò壬´ÓµÚ¶þ²½µ½µÚÈý²½²¢Ã»Óн«¸Ã¶àÏîʽ»¯ÎªÕûʽµÄ»ýµÄÐÎʽ£¬
¹Ê´ÓµÚ¶þ²½µ½µÚÈý²½Ã»ÓÐÒòʽ·Ö½â£»
£¨2£©´ÓµÚÈý²½µ½µÚËIJ½£¬ÒÀ¾Ýƽ·½²î¹«Ê½½«¶àÏîʽ»¯ÎªÁ©ÕûʽµÄ»ý£¬
¹ÊÓõ½µÄÒòʽ·Ö½â·½·¨ÊÇÆ½·½²î¹«Ê½·¨£»
£¨3£©m2-6mn+8n2£¬
=m2-6mn+9n2-n2£¬
=£¨m-3n£©2-n2£¬
=£¨m-3n+n£©£¨m-3n-n£©£¬
=£¨m-2n£©£¨m-4n£©£»
¹Ê´ð°¸Îª£º£¨1£©D£»£¨2£©Æ½·½²î¹«Ê½·¨£®
µãÆÀ ±¾Ì⿼²éÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£¬½âÌâµÄ¹Ø¼üÊÇ׼ȷÀí½â·¶ÀýµÄ·Ö½â¹ý³Ì£¬È»ºó¶ÔËù¸ø¶àÏîʽ½øÐÐÇ¡µ±µÄÌíÏ×îÖÕÄÜÀûÓù«Ê½½øÐзֽ⣬ʵÖÊÊÇÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Èç¹û£¨x+a£©£¨x+b£©µÄ½á¹ûÖв»º¬xµÄÒ»´ÎÏÄÇôa¡¢bÓ¦Âú×㣨¡¡¡¡£©
| A£® | a=b | B£® | a=0 | C£® | ab=1 | D£® | a+b=0 |
2£®ÏÂÁжàÏîʽÖУ¬²»ÄÜÓù«Ê½·¨·Ö½âÒòʽµÄÊÇ£¨¡¡¡¡£©
| A£® | -a2+b2 | B£® | m2+2mn+2n2 | C£® | x2+4xy+4y2 | D£® | x2-$\frac{1}{2}$xy+$\frac{1}{16}$y2 |