题目内容
9.经过某个十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是$\frac{2}{9}$.分析 此题可以采用列表法或树状图求解.可以得到一共有9种情况,两辆汽车一辆左转,一辆右转的有2种情况,根据概率公式求解即可.
解答 解:画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:![]()
∵这两辆汽车行驶方向共有9种可能的结果,两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,
∴P(两辆汽车一辆左转,一辆右转)=$\frac{2}{9}$.
故答案为:$\frac{2}{9}$.
点评 此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.
练习册系列答案
相关题目
19.小红、小明在玩“剪子、包袱、锤子”游戏,小红给自己一个规定:一直不出“锤子”.小红、小明获胜的概率分别是P1,P2,则下列结论正确的是( )
| A. | P1=P2 | B. | P1>P2 | C. | P1<P2 | D. | P1≤P2 |
4.下列事件是必然事件的为( )
| A. | 相等的圆周角所对的弧相等 | |
| B. | 方程x2-x+1=0有两个不等实根 | |
| C. | 同一个角的正弦值和余弦值的和等于1 | |
| D. | 圆的切线垂直于过切点的半径 |
18.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
请估计:
(1)当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)
(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4;
(3)试估算口袋中黑球有多少只?
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
| 摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
| 摸到白球的频率$\frac{m}{n}$ | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)
(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4;
(3)试估算口袋中黑球有多少只?