题目内容

9.如图所示的尺规作图的痕迹表示的是(  )
A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段
C.尺规作一个角等于已知角D.尺规作角的平分线

分析 利用线段垂直平分线的作法进而判断得出答案.

解答 解:如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.
故选:A.

点评 此题主要考查了基本作图,正确把握作图方法是解题关键.

练习册系列答案
相关题目
19.问题情境:
我们知道若一个矩形的周长固定,当相邻两边相等,即为正方形时,面积是最大的,反过来,若一个矩形的面积固定,它的周长是否会有最值呢?
探究方法:
用两条直角边分别为a、b的四个全等的直角三角形,可以拼成一个正方形,若a≠b,可以拼成如图①的正方形,从而得到a2+b2>4×$\frac{1}{2}$ab,即a2+b2>2ab;若a=b,可以拼成如图②的正方形,从而得到a2+b2=4×$\frac{1}{2}$ab,即a2+b2=2ab.
于是我们可以得到结论:a,b为正数,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.
另外,我们也可以通过代数式运算得到类似上面的结论.
∵(a-b)2=a2-2ab+b2≥0,a2+b2≥2ab,∴对于任意实数a,b,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.
仿照上面的方法,对于正数a,b试比较a+b和2$\sqrt{ab}$的大小关系.
类比应用
利用上面所得到的结论,完成填空:
(1)当x>0时,x2+$\frac{1}{{x}^{2}}$≥2x•$\frac{1}{x}$,代数式x2+$\frac{1}{{x}^{2}}$有最小值为2.
(2)当x>0时,x+$\frac{9}{x}$≥2$\sqrt{x•\frac{9}{x}}$,代数式x+$\frac{9}{x}$有最小值为6.
(3)当x>2时,x+$\frac{5}{x-2}$≥2$\sqrt{(x-2)•\frac{5}{x-2}}$+2,代数式x+$\frac{5}{x-2}$有最小值为2$\sqrt{5}$+2.
问题解决:
若一个矩形的面积固定为n,它的周长是否会有最值呢?若有,求出周长的最值及此时矩形的长和宽;若没有,请说明理由,由此你能得到怎样的结论?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网