题目内容
3.有一列数:a1=3×2,a2=3×3+1,a3=3×4+2,a4=3×5+3,…,请你研究一下,a8等于什么?并请你用含有n的式子来表示an.(n是正整数)分析 观察给出的几个an的值,根据数的变化得出规律“an=3×(n+1)+(n-1)=4n+2(n为正整数)”,依据该规律即可解决问题.
解答 解:观察,发现规律:a1=3×2,a2=3×3+1,a3=3×4+2,a4=3×5+3,…,
∴an=3×(n+1)+(n-1)=4n+2(n为正整数).
当n=8时,a8=3×9+7=34.
点评 本题考查了规律型中的数字的变化类,解题的关键是找出数的变化规律“an=3×(n+1)+(n-1)=4n+2(n为正整数)”.本题属于基础题,难度不大,解决该题型题目时,根据数据的变化找出变化规律是关键.
练习册系列答案
相关题目
11.
如图,AB、CD是⊙O的直径,弦CE∥AB,CE为100°,则∠AOC的度数为( )
| A. | 30° | B. | 39° | C. | 40° | D. | 45° |