题目内容
17.解不等式组:$\left\{\begin{array}{l}{3-x>x+1}\\{(2x-3)-(5x+2)≤1}\end{array}\right.$.分析 分别求出各不等式的解集,再求出其公共解集即可.
解答 解:$\left\{\begin{array}{l}3-x>x+1①\\(2x-3)-(5x+2)≤1②\end{array}\right.$,由①得,x<1,由②得,x≥-2,故不等式组的解集为:-2≤x<1.
点评 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
练习册系列答案
相关题目
7.
如图,将两块大小相同的三角板重叠在一起,∠A=30°,∠B=60°,BC=10cm,把上面一块三角板绕顶点C作逆时针方向旋转到△A′B′C′的位置,点B′在AB上,A′B′与AC相交于点D,则A′D的长度为( )
| A. | 14cm | B. | 15cm | C. | 16cm | D. | 17cm |
5.若k为任意实数,则抛物线y=-2(x-k)2+k的顶点在( )
| A. | 直线y=x上 | B. | 直线y=-x上 | C. | x轴上 | D. | y轴上 |
15.
根据学习函数的经验,小明对函数y=x2+$\frac{1}{x}$的图象与性质进行了探究.下面是小明的探究过程,请补充完成:
(1)函数y=x2+$\frac{1}{x}$的自变量x的取值范围是x≠0.
(2)下表是y与x的几组对应值,其中m=$\frac{28}{3}$;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,2),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值或该函数没有最小值或该函数不经过第四象限或该函数在x=0处断开..
(1)函数y=x2+$\frac{1}{x}$的自变量x的取值范围是x≠0.
(2)下表是y与x的几组对应值,其中m=$\frac{28}{3}$;
| x | … | -3 | -2 | -1 | -$\frac{1}{2}$ | -$\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{2}$ | 1 | 2 | 3 | … |
| y | … | $\frac{26}{3}$ | $\frac{7}{2}$ | 0 | -$\frac{7}{4}$ | -$\frac{26}{9}$ | $\frac{28}{9}$ | $\frac{9}{4}$ | 2 | $\frac{9}{2}$ | m | … |
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,2),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值或该函数没有最小值或该函数不经过第四象限或该函数在x=0处断开..