ÌâÄ¿ÄÚÈÝ
8£®ÈÏÕæÔĶÁÏÂÃæ²ÄÁϲ¢½â´ðÏÂÃæµÄÎÊÌ⣺ÔÚÒ»´Îº¯Êýy=kx+b£¨k¡Ù0£©ÖУ¬¿ÉÒÔ×÷ÈçϱäÐΣºkx=y-b$x=\frac{1}{k}y-\frac{b}{k}$£¨k¡Ù0£©
ÔÙ°Ñ$x=\frac{1}{k}y-\frac{b}{k}$ÖеÄx£¬y»¥»»£¬µÃµ½$y=\frac{1}{k}x-\frac{b}{k}$£¬
´ËʱÎÒÃǾͰѺ¯Êý$y=\frac{1}{k}x-\frac{1}{k}b$£¨k¡Ù0£©½Ð×öº¯Êýy=kx+bµÄ·´º¯Êý£®
ͬʱ£¬Èç¹ûÁ½¸öº¯Êý½âÎöʽÏàͬ£¬×Ô±äÁ¿µÄȡֵ·¶Î§Ò²Ïàͬ£¬Ôò³ÆÕâÁ½¸öº¯ÊýΪͬһº¯Êý£®
£¨1£©Çóº¯Êý$y=\frac{1}{2}x+1$ÓëËüµÄ·´º¯ÊýµÄ½»µã×ø±ê£»
£¨2£©Èôº¯Êýy=kx+2ÓëËüµÄ·´º¯ÊýÊÇͬһº¯Êý£¬ÇókµÄÖµ£®
·ÖÎö £¨1£©µÃ³ö·´º¯Êý£¬È»ºóÁªÁ¢·½³Ì£¬½â·½³Ì×é¼´¿ÉÇóµÃ£»
£¨2£©µÃ³ö·´º¯Êý£¬¸ù¾Ýͬһº¯ÊýµÄ¸ÅÄîµÃ³ök=$\frac{1}{k}$£¬2=-$\frac{2}{k}$£¬¼´¿ÉÇóµÃk=-1£®
½â´ð ½â£º£¨1£©Óɺ¯Êý$y=\frac{1}{2}x+1$¿ÉÖªËüµÄ·´º¯ÊýΪy=2x-2£¬
½â$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=2x-2}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àº¯Êý$y=\frac{1}{2}x+1$ÓëËüµÄ·´º¯ÊýµÄ½»µã×ø±êΪ£¨2£¬2£©£»
£¨2£©Óɺ¯Êýy=kx+2¿ÉÖªËüµÄ·´º¯ÊýÊÇy=$\frac{1}{k}$x-$\frac{2}{k}$£¬
¡ßº¯Êýy=kx+2ÓëËüµÄ·´º¯ÊýÊÇͬһº¯Êý£¬
¡àk=$\frac{1}{k}$£¬2=-$\frac{2}{k}$£¬
¡àk=-1£®
µãÆÀ ±¾Ì⿼²éÁËÁ½ÌõÖ±ÏߵĽ»µãÎÊÌ⣬µÃ³ö·´º¯ÊýµÄ½âÎöʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿