题目内容
14.| A. | 90° | B. | 125° | C. | 135° | D. | 145° |
分析 根据圆周角定理求出∠A的度数,根据圆内接四边形的性质计算即可.
解答 解:∵∠BOD=90°,
∴∠A=$\frac{1}{2}$∠BOD=45°,
∵四边形ABCD为⊙O的内接四边形,
∴∠A+∠BCD=180°,
∴∠BCD=135°,
故选:C.
点评 本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
练习册系列答案
相关题目
2.
如图,圆内接四边形ABCD的两组对边的延长线分别相较于点E,F,若∠A=55°,∠E=30°,则∠F=( )
| A. | 25° | B. | 30° | C. | 40° | D. | 55° |
9.谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:
设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为yA元,yB元.
(1)当x≥50时,分别求出yA,yB与x之间的函数关系式;
(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?
| 收费方式 | 月使用费/元 | 包时上网时间/h | 超时费/(元/min) |
| A | 7 | 25 | 0.6 |
| B | 10 | 50 | 0.8 |
(1)当x≥50时,分别求出yA,yB与x之间的函数关系式;
(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?
6.在平面直角坐标系中,点M(-2,6)关于原点对称的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |