题目内容

4.如图,菱形ABCD的对角线BD、AC的长分别为2,2$\sqrt{3}$,以点B为圆心的弧与AD、DC相切,则图中阴影部分的面积是2$\sqrt{3}$-π.

分析 连接AC、BD、BE,在Rt△AOB中可得∠BAO=30°,∠ABO=60°,在Rt△ABE中求出BE,得出扇形半径,由菱形面积减去扇形面积即可得出阴影部分的面积.

解答 解:连接AC、BD、BE,

∵四边形ABCD是菱形,
∴AC与BD互相垂直且平分,
∴AO=$\sqrt{3}$,BO=1,
∵tan∠BAO=$\frac{\sqrt{3}}{3}$,tan∠ABO=$\sqrt{3}$,
∴∠BAO=30°,∠ABO=60°,
∴AB=2,∠BAE=60°,
∵以B为圆心的弧与AD相切,
∴∠AEB=90°,
在Rt△ABE中,AB=2,∠BAE=60°,
∴BE=ABsin60°=$\sqrt{3}$,
∴S菱形-S扇形=$\frac{1}{2}$×2×2$\sqrt{3}$-$\frac{120π×(\sqrt{3})^{2}}{360}$=2$\sqrt{3}$-π.
故答案为:2$\sqrt{3}$-π.

点评 本题考查了扇形的面积计算、菱形的性质及切线的性质,解答本题的关键是根据菱形的性质求出各角度及扇形的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网