题目内容
16.分析 设小路的宽为xm,那么小路所占面积为(40x+2×26x-2x2),于是六块草坪的面积为[40×26-(40x+2×26x-2x2)],根据面积之间的关系可列方程40×26-(40x+2×26x-2x2)=144×6,解方程求解,并根据实际意义进行值的取舍即可确定甬路的宽.
解答 解:设小路的宽为xm,根据题意得40×26-(40x+2×26x-2x2)=144×6,
整理得x2-46x+88=0,
解得x1=44,x2=2,
当x=44时不符合题意,故舍去,
所以x=2.
答:路的宽度是2m.
点评 本题考查的是一元二次方程的应用以及矩形面积计算公式,难度一般.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
练习册系列答案
相关题目
7.
如图,在?ABCD中,AB=6,AD=8,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=4$\sqrt{2}$,则四边形AECD的周长为( )
| A. | 20 | B. | 21 | C. | 22 | D. | 23 |
4.
如图是五个相同的正方体组成的一个几何体,则其俯视图是( )
| A. | B. | C. | D. |
11.
南水北调工程中线已经在12月27日开始向北京、天津等地供水.为了进一步加强居民的节水意识,合理调配水资源,某区决定对本区的居民用水实行额定用水管理.为了更好的确定额定用水的用水量,首先对本区居民的目前生活用水量进行了入户调查.下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨).
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
(1)请你将调查数据进行如下整理:
频数分布表
(2)结合整理的数据完成频数分布直方图,通过观察直方图你可以得到哪些信息?请你写出你得到的信息.
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定多少吨?
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
(1)请你将调查数据进行如下整理:
频数分布表
| 分组 | 划记(用正字划记) | 频数 |
| 2.0<x≤3.5 | ||
| 3.5<x≤5.0 | ||
| 5.0<x≤6.5 | ||
| 6.5<x≤8.0 | ||
| 8.0<x≤9.5 | ||
| 合计 |
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定多少吨?
1.
随着“微信”的流行,不少初中学生在微信朋友圈忙着“发状态”,某校在使用微信的学生中随机抽取了部分,并调查他们平常每天上微信的时间,绘制了统计表和条形统计图:
请根据图中的信息,回答下列问题:
(1)结合统计图表,统计表中a=0.475,b=20;
(2)所抽查的学生上微信的平均时间为0.9875小时;
(3)若该校有640名学生,请你估计该校每天上微信的时间不少于1小时的学生有多少人?
| 上微信的时间(小时) | 频数(人数) | 频率 |
| 0.5 | 38 | a |
| 1 | b | 0.25 |
| 1.5 | 14 | c |
| 2 | 8 | 0.1 |
(1)结合统计图表,统计表中a=0.475,b=20;
(2)所抽查的学生上微信的平均时间为0.9875小时;
(3)若该校有640名学生,请你估计该校每天上微信的时间不少于1小时的学生有多少人?