题目内容

6.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1-4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.

分析 列表得出所有等可能的情况数,找出数字之和大于5的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.

解答 解:这个游戏对双方不公平.
理由:列表如下:

 1234
1(1,1)(2,1)(3,1)(4,1)
2(1,2)(2,2)(3,2)(4,2)
3(1,3)(2,3)(3,3)(4,3)
4(1,4)(2,4)(3,4)(4,4)
所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,
故小颖获胜的概率为:$\frac{6}{16}$=$\frac{3}{8}$,则小丽获胜的概率为:$\frac{5}{8}$,
∵$\frac{3}{8}$<$\frac{5}{8}$,
∴这个游戏对双方不公平.

点评 此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网