题目内容

17.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.
(1)求证:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半径.

分析 (1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;
(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=$\frac{1}{2}$CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.

解答 (1)
证明:连接OA.
∵AE是⊙O切线,
∴OA⊥AE,
∴∠OAE=90°,
∴∠EAD+∠OAD=90°,
∵∠ADO=∠ADE,OA=OD,
∴∠OAD=∠ODA=∠ADE,
∴∠EAD+∠ADE=90°,
∴∠AED=90°,
∴AE⊥CD;
(2)解:过点O作OF⊥CD,垂足为点F.
∵∠OAE=∠AED=∠OFD=90°,
∴四边形AOFE是矩形.
∴OF=AE=4cm. 
又∵OF⊥CD,
∴DF=$\frac{1}{2}$CD=3cm. 
在Rt△ODF中,OD=$\sqrt{O{F}^{2}+D{F}^{2}}$=5cm,
即⊙O的半径为5cm.

点评 本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网