题目内容
3.一个袋子中装有大小完全相同的3个乒乓球,其中2个白色,1个黄色.请你用它为甲、乙两位同学设计一个能决定胜负的公平的摸球游戏规则.并说明公平的理由.分析 制定游戏规则关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.
解答 解:游戏规则:从袋子中摸出一个球,记录其颜色,放回,搅匀,再从袋子中摸出一球;若两个都是白色,则甲胜;若两个为一个黄色一个白色,则乙胜,(游戏规则不唯一)
理由如下:![]()
从树形可知,共有9种可能,且都是等可能,其中两个都是白色的有4种可能,一个黄色一个色的有4种可能,
∴P(甲)=P(乙)=$\frac{4}{9}$,
∴游戏公平.
点评 此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
练习册系列答案
相关题目