ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Çó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£®
£¨2£©ÉèÒÔµãA¡¢B¡¢C¡¢OΪ¶¥µãµÄËıßÐÎÃæ»ýΪS£®
¢Ùµ±µãCÔÚµÚÒ»ÏóÏÞʱ£¬ÇóS=3ʱxµÄÖµ£®
¢Úµ±µãCÔÚµÚ¶þÏóÏÞʱ£¬ÇóSÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£®
£¨3£©µ±¡ÏABO=¡ÏOCDʱ£¬ÇóxµÄÖµ£®
·ÖÎö £¨1£©ÉèÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽΪy=ax2+bx+c£¬½«µãA£¨0£¬2£©¡¢B£¨-1£¬0£©·Ö±ð´úÈë½âÎöʽ²¢¸ù¾Ý¶Ô³ÆÖáΪx=-$\frac{b}{2a}$Áз½³Ì½â´ð£»
£¨2£©¢Ùµ±µãCÔÚµÚÒ»ÏóÏÞʱ£¬ÒÔµãA¡¢B¡¢C¡¢OΪ¶¥µãµÄËıßÐÎÃæ»ýS=S¡÷ABO+S¡÷ACO£»
¢Úµ±µãCÔÚµÚ¶þÏóÏÞʱ£¬ÒÔµãA¡¢B¡¢C¡¢OΪ¶¥µãµÄËıßÐÎÃæ»ýS=S¡÷ACO+S¡÷BCO£®
£¨3£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£ºµ±µãCÔÚµÚÒ»ÏóÏÞʱ£¬¡ÏABO=¡ÏOCD£¬¿ÉµÃ¡÷ABO¡×¡÷OCD£»
µ±µãCÔÚµÚ¶þÏóÏÞʱ£¬¡ÏABO=¡ÏOCD£¬¿ÉµÃ¡÷ABO¡×¡÷OCD£®
½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽΪy=ax2+bx+c£¬
¡ßÅ×ÎïÏß¾¹ýµãA£¨0£¬2£©¡¢B£¨-1£¬0£©£¬ÇÒ¶Ô³ÆÖáΪx=1£®
¡à$\left\{\begin{array}{l}c=2\\-\frac{b}{2a}=1\\ a-b+c=0\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}a=-\frac{2}{3}\\ b=\frac{4}{3}\\ c=2\end{array}\right.$£¬
¡àÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽΪ$y=-\frac{2}{3}{x^2}+\frac{4}{3}x+2$£¨»ò$y=-\frac{2}{3}{£¨x-1£©^2}+\frac{8}{3}$£©£®
£¨2£©¢Ùµ±µãCÔÚµÚÒ»ÏóÏÞʱ£¬
ÒÔµãA¡¢B¡¢C¡¢OΪ¶¥µãµÄËıßÐÎÃæ»ýS=S¡÷ABO+S¡÷ACO=$\frac{1}{2}$¡Á2¡Á1+$\frac{1}{2}$¡Á2x=3£®
½âµÃx=2£®
¢Úµ±µãCÔÚµÚ¶þÏóÏÞʱ£¬
ÒÔµãA¡¢B¡¢C¡¢OΪ¶¥µãµÄËıßÐÎÃæ»ý
S=S¡÷ACO+S¡÷BCO=$\frac{1}{2}$¡Á2£¨-x£©+$\frac{1}{2}$¡Á1•£¨$-\frac{2}{3}{x^2}+\frac{4}{3}x+2$£©
=$-\frac{1}{3}{x^2}-\frac{1}{3}x+1$£®
¡àS ¹ØÓÚxµÄº¯Êý¹ØÏµÊ½ÎªS=$-\frac{1}{3}{x^2}-\frac{1}{3}x+1$£®
£¨3£©µ±µãCÔÚµÚÒ»ÏóÏÞʱ£¬
¡ß¡ÏABO=¡ÏOCD£¬
¡à¡÷ABO¡×¡÷OCD£¬
¡à$\frac{AO}{OD}=\frac{BO}{CD}$£¬ÔòÓÐ$\frac{AO}{BO}=\frac{OD}{CD}=\frac{2}{1}$£¬
¡à2x=$-\frac{2}{3}{x^2}+\frac{4}{3}x+2$£®
½âµÃx=$\frac{{-1+\sqrt{13}}}{2}$»òx=$\frac{{-1-\sqrt{13}}}{2}$£¨Éᣩ£®
µ±µãCÔÚµÚ¶þÏóÏÞʱ£¬
¡ß¡ÏABO=¡ÏOCD£¬
¡à¡÷ABO¡×¡÷OCD£¬
¡à$\frac{AO}{OD}=\frac{BO}{CD}$£¬ÔòÓÐ$\frac{AO}{BO}=\frac{OD}{CD}=\frac{2}{1}$£¬
¡à-2x=$-\frac{2}{3}{x^2}+\frac{4}{3}x+2$£®
½âµÃx=$\frac{{5-\sqrt{37}}}{2}$»òx=$\frac{{5+\sqrt{37}}}{2}$£¨Éᣩ£®
×ÛÉÏ£¬µ±¡ÏABO=¡ÏOCDʱ£¬xµÄֵΪ$\frac{{-1+\sqrt{13}}}{2}$»ò$\frac{{5-\sqrt{37}}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬×ÛºÏÐÔ½ÏÇ¿£®