ÌâÄ¿ÄÚÈÝ
7£®| A£® | $\frac{8\sqrt{n}}{3}$ | B£® | 2$\sqrt{n}$ | C£® | $\frac{4\sqrt{n}}{3}$ | D£® | $\frac{2\sqrt{n}}{3}$ |
·ÖÎö ÓÉÓÚ¡÷P1OA1ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉÖªÖ±ÏßOP1µÄ½âÎöʽΪy=x£¬½«ËüÓëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬Çó³ö·½³Ì×éµÄ½â£¬µÃµ½µãP1µÄ×ø±ê£¬ÔòA1µÄºá×ø±êÊÇP1µÄºá×ø±êµÄÁ½±¶£¬´Ó¶øÈ·¶¨µãA1µÄ×ø±ê£»ÓÉÓÚ¡÷P1OA1£¬¡÷P2A1A2¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòA1P2¡ÎOP1£¬Ö±ÏßA1P2¿É¿´×÷ÊÇÖ±ÏßOP1ÏòÓÒÆ½ÒÆOA1¸öµ¥Î»³¤¶ÈµÃµ½µÄ£¬Òò¶øµÃµ½Ö±ÏßA1P2µÄ½âÎöʽ£¬Í¬Ñù£¬½«ËüÓëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬Çó³ö·½³Ì×éµÄ½â£¬µÃµ½µãP2µÄ×ø±ê£¬ÔòP2µÄºá×ø±êÊÇÏß¶ÎA1A2µÄÖе㣬´Ó¶øÈ·¶¨µãA2µÄ×ø±ê£»ÒÀ´ËÀàÍÆ£¬´Ó¶øÈ·¶¨µãAnµÄ×ø±ê£¬µÃ³öOAnµÄ³¤£¬È»ºó¸ù¾Ýl1=$\frac{4}{3}$OA1£¬l2=$\frac{4}{3}$A1A2£¬l3=$\frac{4}{3}$A2A3¡ln=$\frac{4}{3}$An-1An£¬¼´¿ÉÇóµÃl1+l2+l3+¡+ln=$\frac{4}{3}$OAn=$\frac{4}{3}$¡Á2 $\sqrt{n}$=$\frac{8}{3}$$\sqrt{n}$£®
½â´ð ½â£º¹ýP1×÷P1M1¡ÍxÖáÓÚM1£¬ÈçͼËù£º![]()
Ò×ÖªM1£¨1£¬0£©ÊÇOA1µÄÖе㣬
¡àA1£¨2£¬0£©£®
¿ÉµÃP1µÄ×ø±êΪ£¨1£¬1£©£¬
¡àP1OµÄ½âÎöʽΪ£ºy=x£¬
¡ßP1O¡ÎA1P2£¬
¡àA1P2µÄ±í´ïʽһ´ÎÏîϵÊýÏàµÈ£¬
½«A1£¨2£¬0£©´úÈëy=x+b£¬
¡àb=-2£¬
¡àA1P2µÄ±í´ïʽÊÇy=x-2£¬
Óëy=$\frac{1}{x}$£¨x£¾0£©ÁªÁ¢£¬½âµÃP2£¨1+$\sqrt{2}$£¬-1+$\sqrt{2}$£©£®
·ÂÉÏ£¬A2£¨2$\sqrt{2}$£¬0£©£®
P3£¨$\sqrt{2}$+$\sqrt{3}$£¬-$\sqrt{2}$+$\sqrt{3}$£©£¬A3£¨2$\sqrt{3}$£¬0£©£®
ÒÀ´ËÀàÍÆ£¬µãAnµÄ×ø±êΪ£¨2$\sqrt{n}$£¬0£©£¬
¡ßl1=$\frac{4}{3}$OA1£¬l2=$\frac{4}{3}$A1A2£¬l3=$\frac{4}{3}$A2A3¡ln=$\frac{4}{3}$An-1An£¬
¡àl1+l2+l3+¡+ln=$\frac{4}{3}$OAn=$\frac{4}{3}$¡Á2$\sqrt{n}$=$\frac{8}{3}$$\sqrt{n}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬Õý·½ÐεÄÐÔÖʵȣ¬¹Ø¼üÊÇÕÒ³öÇóPµã×ø±êµÄ¹æÂÉ£¬ÒÔÕâ¸ö¹æÂÉΪ»ù´¡Çó³öPnµÄºá×ø±ê£¬½ø¶øÇó³öAnµÄºá×ø±êµÄÖµ£¬´Ó¶ø¿ÉµÃ³öËùÇóµÄ½á¹û£®
| A£® | ÖÚÊý | B£® | ·½²î | C£® | ƽ¾ùÊý | D£® | ÖÐλÊý |
| A£® | $\sqrt{18}$ | B£® | $\sqrt{\frac{1}{3}}$ | C£® | $\sqrt{24}$ | D£® | $\sqrt{0.3}$ |