题目内容

如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角有(不含∠1)
 
个,若∠1=40°,则∠AHG=
 
考点:平行线的性质
专题:
分析:由平行线的性质可得到∠1=∠HEF=∠AHE=∠GHC=∠HCF=∠DAC,结合∠DAH+∠AHG=180°,可求得∠AHG.
解答:解:
∵EF∥AC,
∴∠1=∠HCF,∠FEH=∠AHE,
∵EG∥BC,
∴∠1=∠FEH,∠GHC=∠HCF,
∴AD∥BC,
∴∠DAH=∠HCF,
∴∠1=∠HEF=∠AHE=∠GHC=∠HCF=∠DAC,
即和∠1相等的角有5个;
当∠1=40°时,则∠DAC=∠1=40°,
∵AD∥EG,
∴∠DAC+∠AHG=180°,
∴∠AHG=180°-40°=140°;
故答案为:5;140°.
点评:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网