题目内容

18.解方程组:$\left\{\begin{array}{l}{3{x}^{2}+xy+{y}^{2}=15}\\{3{x}^{2}-31xy+5{y}^{2}=-45}\end{array}\right.$.

分析 将①×3+②得x2-7xy+2y2=0,即(x-2y)(3x-y)=0,从而可得x=2y或3x=y,再分别代入方程①即可求得方程组的解.

解答 解:解方程组$\left\{\begin{array}{l}{3{x}^{2}+xy+{y}^{2}=15}&{①}\\{3{x}^{2}-31xy+5{y}^{2}=-45}&{②}\end{array}\right.$,
①×3+②,得:12x2-28xy+8y2=0,即x2-7xy+2y2=0,
左边因式分解,得:(x-2y)(3x-y)=0,
∴x=2y或3x=y,
将x=2y代入①,得:12y2+2y2+y2=15,即15y2=15,
解得:y=±1,
∴此时方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$;
将3x=y代入①,得:15x2=15,
解得:x=±1,
∴此时方程组的解为:$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$;
综上,方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$.

点评 本题主要考查解高次方程的能力,高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网