题目内容
2.(1)求证:DF是⊙O的切线;
(2)若AC=3AE,DF=$\sqrt{2}$,则CF=2.
分析 (1)连接OD,根据等边对等角性质和平行线的判定和性质证得OD⊥DF,从而证得DF是⊙O的切线;
(2)根据圆周角定理、勾股定理得出BE=2$\sqrt{2}$AE,CE=4AE,然后根据勾股定理求得BE=2$\sqrt{2}$AE,然后证得△DFC∽△BEC,根据相似三角形的性质即可得到结论.
解答
(1)证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:连接BE,AD,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=2$\sqrt{2}$AE,
∴$\frac{BE}{CE}$=$\frac{\sqrt{2}}{2}$,
∵∠DFC=∠AEB=90°,
∴DF∥BE,
∴△DFC∽△BEC,
∴$\frac{DF}{CF}$=$\frac{BE}{CE}$=$\frac{\sqrt{2}}{2}$,
∴DF=$\frac{\sqrt{2}}{2}$FC,
∵DF=$\sqrt{2}$,
∴CF=2.
故答案为:2.
点评 本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理的应用以及三角形相似的判定和性质等,是一道综合题,难度中等.
练习册系列答案
相关题目
10.
如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )
| A. | 变大 | B. | 先变大后变小 | C. | 先变小后变大 | D. | 不变 |
11.下面四个图形中,是三棱柱的平面展开图的是( )
| A. | B. | C. | D. |