ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êԵ㣬µãAÔÚyÖáÕý°ëÖáÉÏ£¬µãBÔÚxÖḺ°ëÖáÉÏ£¬µãCÔÚxÖáÕý°ëÖáÉÏ£¬ÇÒAB=AC£¬OA=BC£¬µãDÊÇÏß¶ÎOAÉÏÒ»µã£¬ÇÒOD=
OA£¬¹ýµãD×÷xÖáµÄƽÐÐÏß½»Ïß¶ÎABÓÚµãE£¬¡÷ABCµÄÃæ»ýΪ8£®

£¨1£©ÇóABËùÔÚÖ±ÏߵĽâÎöʽÒÔ¼°Ïß¶ÎDEµÄ³¤£»
£¨2£©µãPÊÇÏß¶ÎOBÉÏÒ»µã£¨µãP²»ÓëµãO¡¢BÖØºÏ£©£¬¹ýµãP×÷PQ¡ÎAB½»yÖáÓÚµãQ£¬ÉèµãPµÄ×ø±êΪ£¨t£¬0£©£¬Ïß¶ÎDQ³¤Îªy£¨y£¾0£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ö±½Óд³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬MÊÇÉäÏßDEÉÏÒ»µã£¬ÊÇ·ñ´æÔÚtÖµ£¬Ê¹¡÷PMQÊÇÒÔPQΪֱ½Ç±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚÇëÇó³ötÖµ¼°µãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| 1 |
| 4 |
£¨1£©ÇóABËùÔÚÖ±ÏߵĽâÎöʽÒÔ¼°Ïß¶ÎDEµÄ³¤£»
£¨2£©µãPÊÇÏß¶ÎOBÉÏÒ»µã£¨µãP²»ÓëµãO¡¢BÖØºÏ£©£¬¹ýµãP×÷PQ¡ÎAB½»yÖáÓÚµãQ£¬ÉèµãPµÄ×ø±êΪ£¨t£¬0£©£¬Ïß¶ÎDQ³¤Îªy£¨y£¾0£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ö±½Óд³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬MÊÇÉäÏßDEÉÏÒ»µã£¬ÊÇ·ñ´æÔÚtÖµ£¬Ê¹¡÷PMQÊÇÒÔPQΪֱ½Ç±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚÇëÇó³ötÖµ¼°µãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÒ»´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý£¬¿ÉµÃOA¡¢BCµÄ³¤£¬¿ÉµÃAµãBµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£¬¸ù¾Ýº¯ÊýÖµ£¬¿ÉµÃÏàÓ¦×Ô±äÁ¿µÄÖµ£»
£¨2£©·ÖÀàÌÖÂÛ£º¢Ùµ±-2£¼t£¼-
ʱ£¬¢Úµ±-
¡Üt£¼0£¬¸ù¾ÝƽÐÐÏßµÄбÂÊÏàµÈ£¬¿ÉµÃPQµÄº¯Êý½âÎöʽ£¬¸ù¾Ý×Ô±äÁ¿µÄÖµ£¬¿ÉµÃQµãµÄ×ø±ê£¬¸ù¾ÝPQµÄ¾àÀ룬¿ÉµÃº¯Êý½âÎöʽ£»
£¨3£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉµÃPQÓëPMµÄ¹ØÏµ£¬¸ù¾ÝPQ¡ÍPM£¬¿ÉµÃÁ½ÌõÖ±ÏßµÄбÂʵij˻ýΪ-1£¬ÔÙ¸ù¾ÝPQ=PM£¬¿ÉµÄ·½³Ì×飬¸ù¾Ý½â·½³Ì×飬¿ÉµÃd´ð°¸£®
£¨2£©·ÖÀàÌÖÂÛ£º¢Ùµ±-2£¼t£¼-
| 1 |
| 2 |
| 1 |
| 2 |
£¨3£©¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉµÃPQÓëPMµÄ¹ØÏµ£¬¸ù¾ÝPQ¡ÍPM£¬¿ÉµÃÁ½ÌõÖ±ÏßµÄбÂʵij˻ýΪ-1£¬ÔÙ¸ù¾ÝPQ=PM£¬¿ÉµÄ·½³Ì×飬¸ù¾Ý½â·½³Ì×飬¿ÉµÃd´ð°¸£®
½â´ð£º½â£º£¨1£©ÓÉOA=BC£¬¡÷ABCµÄÃæ»ýΪ8£¬µÃ
S¡÷ABC=
OA•BC=8£®
½âµÃOA=BC=4£®¼´A£¨0£¬4£©
ÓÉAB=AC£¬OA¡ÍBO£¬µÃ
OB=2£¬¼´B£¨-2£¬0£©£¬
ÉèABËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬Í¼Ïó¹ýµãA¡¢B£¬µÃ
£¬½âµÃ
£®
ABËùÔÚÖ±ÏߵĽâÎöʽΪy=2x+4£¬
ÓÉOD=
OA=1£¬¼´D£¨0£¬1£©£®
ÓÉDE¡Îx£¬µÃEµã×Ý×ø±êΪ1£¬
µ±y=1ʱ£¬2x+4=1£¬½âµÃx=-
£¬
E£¨-
£¬1£©£®
DEµÄ³¤Îª0-£¨-
£©=
£»
£¨2£©Èçͼ1£º
¢Ùµ±-2£¼t£¼-
ʱ£¬ÓÉPQ¡ÎAB£¬ÉèPQµÄº¯Êý½âÎöʽΪy=2x+b£¬
y=0ʱ£¬2t+b=0£¬½âµÃb=-2t¼´Q£¨0£¬-2t£©£®
QDµÄ³¤y=-2t-1£»
¢Úµ±-
¡Üt£¼0ʱ£¬Èçͼ£º
£¬
ÓÉPQ¡ÎAB£¬ÉèPQµÄº¯Êý½âÎöʽΪy=2x+b£¬
y=0ʱ£¬2t+b=0£¬½âµÃb=-2t¼´Q£¨0£¬-2t£©£®
QDµÄ³¤y=2t+1£»
×ÛÉÏËùÊö£ºy=
£»
£¨3£©Èçͼ3£º
£¬
ÉèQ£¨a£¬1£©£¬ÓÉ£¨2£©µÃP£¨t£¬0£©£¬Q£¨0£¬-2t£©£®
ÓÉ¡÷PMQÊÇÒÔPQΪֱ½Ç±ßµÄµÈÑüÈý½ÇÐΣ¬µÃQP=PM£¬QP¡ÍPM£®
kMP•kPQ=-1£®µÃkMP=
¡Á2=-1£®t-a=2¢Ù£®
QP2=MQ2¼´£¨-2t£©2+t2=£¨a-t£©2+12 ¢Ú£®
ÁªÁ¢¢Ù¢ÚµÃ
£¬
»¯¼ò£¬µÃ
£¬
°Ñ¢Ù´úÈë¢ÚµÃ5t2=5£¬½âµÃt=1£¨²»·ûºÏÌâÒâµÄÒªÉáÈ¥£©£¬t=-1£¬
°Ñt=-1´úÈë¢ÙµÃa=-1-2=-3£¬
¼´M£¨-3£¬1£©£®
S¡÷ABC=
| 1 |
| 2 |
½âµÃOA=BC=4£®¼´A£¨0£¬4£©
ÓÉAB=AC£¬OA¡ÍBO£¬µÃ
OB=2£¬¼´B£¨-2£¬0£©£¬
ÉèABËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬Í¼Ïó¹ýµãA¡¢B£¬µÃ
|
|
ABËùÔÚÖ±ÏߵĽâÎöʽΪy=2x+4£¬
ÓÉOD=
| 1 |
| 4 |
ÓÉDE¡Îx£¬µÃEµã×Ý×ø±êΪ1£¬
µ±y=1ʱ£¬2x+4=1£¬½âµÃx=-
| 3 |
| 2 |
E£¨-
| 3 |
| 2 |
DEµÄ³¤Îª0-£¨-
| 3 |
| 2 |
| 3 |
| 2 |
£¨2£©Èçͼ1£º
¢Ùµ±-2£¼t£¼-
| 1 |
| 2 |
y=0ʱ£¬2t+b=0£¬½âµÃb=-2t¼´Q£¨0£¬-2t£©£®
QDµÄ³¤y=-2t-1£»
¢Úµ±-
| 1 |
| 2 |
ÓÉPQ¡ÎAB£¬ÉèPQµÄº¯Êý½âÎöʽΪy=2x+b£¬
y=0ʱ£¬2t+b=0£¬½âµÃb=-2t¼´Q£¨0£¬-2t£©£®
QDµÄ³¤y=2t+1£»
×ÛÉÏËùÊö£ºy=
|
£¨3£©Èçͼ3£º
ÉèQ£¨a£¬1£©£¬ÓÉ£¨2£©µÃP£¨t£¬0£©£¬Q£¨0£¬-2t£©£®
ÓÉ¡÷PMQÊÇÒÔPQΪֱ½Ç±ßµÄµÈÑüÈý½ÇÐΣ¬µÃQP=PM£¬QP¡ÍPM£®
kMP•kPQ=-1£®µÃkMP=
| 1 |
| a-t |
QP2=MQ2¼´£¨-2t£©2+t2=£¨a-t£©2+12 ¢Ú£®
ÁªÁ¢¢Ù¢ÚµÃ
|
»¯¼ò£¬µÃ
|
°Ñ¢Ù´úÈë¢ÚµÃ5t2=5£¬½âµÃt=1£¨²»·ûºÏÌâÒâµÄÒªÉáÈ¥£©£¬t=-1£¬
°Ñt=-1´úÈë¢ÙµÃa=-1-2=-3£¬
¼´M£¨-3£¬1£©£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬£¨2£©ÀûÓÃÆ½ÐÐÏßµÄkÖµÏàµÈµÃ³öPQº¯Êý½âÎöʽÊǽâÌâ¹Ø¼ü£¬ÔÙ·ÖÀàÌÖÂ۵óöº¯ÊýyÓëtµÄ½âÎöʽ£¬£¨3£©ÀûÓô¹ÏßµÄkÖµµÄ³Ë»ýΪ-1£¬µÈÑüÈý½ÇÐε͍Ò壬µÃ³ö·½³Ì×éÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
СÃ÷¡¢Ð¡»¢¡¢Ð¡ºìÈýÈËÅųÉÒ»ÅÅÅÄÕÕÆ¬£¬Ð¡Ã÷Õ¾ÔÚÖмäµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
ÈômÓënΪÕýÕûÊý£¬xm+yn+2m+nµÄ´ÎÊýÊÇ£¨¡¡¡¡£©
| A¡¢m | B¡¢n |
| C¡¢m+n | D¡¢m£¬nÖнϴóµÄÊý |