题目内容

18.如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.
(1)求证:FE=FD;
(2)若∠CAD=∠CAB=24°,求∠EDF的度数.

分析 (1)根据三角形的中位线定理得到FE=$\frac{1}{2}$AB,根据直角三角形的性质得到FD=$\frac{1}{2}$AC,等量代换即可;
(2)根据平行线的性质得到∠EFC=∠BAC=24°,根据直角三角形的性质得到∠DFC=48°,根据等腰三角形的性质计算即可.

解答 (1)证明:∵E、F分别是BC、AC的中点,
∴FE=$\frac{1}{2}$AB,
∵F是AC的中点,∠ADC=90°,
∴FD=$\frac{1}{2}$AC,
∵AB=AC,
∴FE=FD;
(2)解:∵E、F分别是BC、AC的中点,
∴FE∥AB,
∴∠EFC=∠BAC=24°,
∵F是AC的中点,∠ADC=90°,
∴FD=AF.
∴∠ADF=∠DAF=24°,
∴∠DFC=48°,
∴∠EFD=72°,
∵FE=FD,
∴∠FED=∠EDF=54°.

点评 本题考查的是三角形中位线定理和直角三角形的性质的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网