题目内容

如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是__.

11 【解析】试题解析:∵BD⊥DC,BD=4,CD=3,由勾股定理得, ∵E、F、G、H分别是AB、AC、CD、BD的中点, ∴HG=BC=EF,EH=FG=AD, ∵AD="6," ∴EF="HG=2.5,EH=GF=3," ∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.
练习册系列答案
相关题目

使两个直角三角形全等的条件是( )

A. 一锐角对应相等 B. 两锐角对应相等 C. 一条边对应相等 D. 两条边对应相等

D 【解析】试题分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证. 【解析】 A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误; B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误; C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错...

若x>y,则下列式子中错误的是( )

A. x-3>y-3 B. x+3>y+3

C. -3x>-3y D.

C 【解析】试题分析:A、不等式的两边都减3,不等号的方向不变,故A正确; B、不等式的两边都加3,不等号方向不变,故B正确; C、不等式的两边都乘-3,不等号的方向改变,故C错误; D、不等式的两边都除以3,不等号的方向改变,故D正确; 故选C.

已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.

证明见解析. 【解析】试题分析:连接AC,取AC中点为M,连接ME、MF,根据中位线定理证明EM=MF,从而可得∠MEF=∠MFE,根据平行线同位角相等,证明∠MEF=∠AHF,∠MFE=∠BGF,可以求证∠AHF=∠BGF. 试题解析:连接AC,取AC中点为M,连接ME、MF,如图: ∵E是CD的中点,M为AC中点, ∴EM∥AD,且EM=AD, ∵M是AC的中点,...

(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.

(2)三角形的中位线定理是三角形的中位线________第三边,并且等于___________.

(1)中点的线段; (2)平行于三角形的 第三边的一半 【解析】(1)三角形的中位线的定义:连结三角形两边中点的线段叫做三角形的中位线, 故答案为:中点的线段; (2)三角形的中位线定理是三角形的中位线平行于三角形的第三边,并且等于第三边的一半, 故答案为:平行于三角形的,第三边的一半.

如图,在△ABC中,∠ACB=90°,AC=8,AB="10." DE垂直平分AC交AB于点E,则DE的长为( )

A. 6 B. 5 C. 4 D. 3

D 【解析】试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=BC=3,故答案选D.

某班同学去春游花了250元包租了一辆客车,如果参加春游的同学每人交8元钱租车费,还不够,如果每人交9元,还用不了.用不等式表示出上述问题中存在的不等关系.

见解析 【解析】试题分析:根据每人交8元钱租车费,还不够可得8x<250;根据如果每人交9元,还用不了可得9x>250. 试题解析:设参加春游的同学x人,由题意得 .

如图,两条相交直线l1与l2的夹角是45°,都是一个图案的对称轴,画出这个图案的其余部分.这个图案共有多少条对称轴?

答案见解析. 【解析】试题分析:根据轴对称图形和对称轴的定义即可得到结果. 如图所示: 这个图案共有四条对称轴.

轴对称图形沿对称轴对折后,对称轴两旁的部分( )

A. 完全重合 B. 不完全重合 C. 两者都有 D. 不确定

A 【解析】由轴对称图形的定义知,轴对称图形沿对称轴对折后,对称轴两旁的部分完全重合. 故选A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网