题目内容

如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是(  )

A. 100° B. 80° C. 70° D. 50°

A 【解析】试题分析:如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果. 【解析】 延长BD交AC于E. ∵DA=DB=DC, ...
练习册系列答案
相关题目

在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有_________个.

10 【解析】试题解析:∵在△ABC中,三边长分别为正整数a、b、c,且 ∴c

化简: =____________.

1 【解析】根据分式的混合运算,先算括号里面的,再算乘法化简即可得===1. 故答案为:1.

下列运算正确的是( )

A. B.

C. D.

B 【解析】根据分式的运算,可知: A. =,故不正确; B. =,故不正确; C. =,故不正确; D. =,故不正确. 故选:B.

如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,求∠ABC的正弦值.

∠ABC的正弦值为 【解析】试题分析:首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值. 试题解析:连接 AB2=32+12=10,BC2=22+12=5,AC=22+12=5, ∴AC=CB,BC2+AC2=AB2, ∴∠BCA=90°, ∴∠ABC=4...

如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值为( )

A. B. C. D.

C 【解析】试题解析:在Rt△ABC中,∠C=90°,AC=3,BC=4, 由勾股定理,得 AB=. cosA=, 故选A.

如图,在△ABC中,BD平分∠ABC,交AC于点D,BC边上有一点E,连接DE,则AD与DE的关系为(  )

A. AD>DE B. AD=DE

C. AD<DE D. 不确定

D 【解析】根据角平分线上的点到角的两边距离相等可得点D到AB、BC的距离相等,AD、BE都不是点D到AB、BC的距离,大小不确定. 【解析】 ∵BD平分∠ABC, ∴点D到AB、BC的距离相等, ∵AD不是点D到AB的距离,点E是BC上一点, ∴AD、DE的大小不确定. 故选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网