题目内容
(1)求证:四边形CEDF是平行四边形;
(2)①当AE=
②当AE=
考点:平行四边形的判定与性质,全等三角形的判定与性质,菱形的判定,矩形的判定
专题:
分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;
(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;
②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.
(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;
②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.
解答:(1)证明:四边形ABCD是平行四边形,
∴CF∥ED,
∴∠FCD=∠GCD,
又∠CGF=∠EGD.
G是CD的中点,
CG=DG,
在△FCG和△EDG中,
∴△CFG≌△EDG(ASA),
∴FG=EG,
∵CG=DG,
∴四边形CEDF是平行四边形;
(2)①解:当AE=3.5时,平行四边形CEDF是矩形,
理由是:过A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5,
∵四边形ABCD是平行四边形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM,
在△MBA和△EDC中,
∴△MBA≌△EDC(SAS),
∴∠CED=∠AMB=90°,
∵四边形CEDF是平行四边形,
∴四边形CEDF是矩形,
故答案为:3.5;
②当AE=2时,四边形CEDF是菱形,
理由是:∵AD=5,AE=2,
∴DE=3,
∵CD=3,∠CDE=60°,
∴△CDE是等边三角形,
∴CE=DE,
∵四边形CEDF是平行四边形,
∴四边形CEDF是菱形,
故答案为:2.
∴CF∥ED,
∴∠FCD=∠GCD,
又∠CGF=∠EGD.
G是CD的中点,
CG=DG,
在△FCG和△EDG中,
|
∴△CFG≌△EDG(ASA),
∴FG=EG,
∵CG=DG,
∴四边形CEDF是平行四边形;
(2)①解:当AE=3.5时,平行四边形CEDF是矩形,
理由是:过A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5,
∵四边形ABCD是平行四边形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM,
在△MBA和△EDC中,
|
∴△MBA≌△EDC(SAS),
∴∠CED=∠AMB=90°,
∵四边形CEDF是平行四边形,
∴四边形CEDF是矩形,
故答案为:3.5;
②当AE=2时,四边形CEDF是菱形,
理由是:∵AD=5,AE=2,
∴DE=3,
∵CD=3,∠CDE=60°,
∴△CDE是等边三角形,
∴CE=DE,
∵四边形CEDF是平行四边形,
∴四边形CEDF是菱形,
故答案为:2.
点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.
练习册系列答案
相关题目