题目内容

5.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是(  )
A.4B.4$\sqrt{3}$C.8D.8$\sqrt{3}$

分析 由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等角可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由角平分线上的点到角的两边的距离相等得出DE=CE=2.由30°角所对的直角边等于斜边的一半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.

解答 解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,
∴∠A=30°,
∵DE是线段AB的垂直平分线,
∴EA=EB,ED⊥AB,
∴∠A=∠EBA=30°,
∴∠EBC=∠ABC-∠EBA=30°,
又∵BC⊥AC,ED⊥AB,
∴DE=CE=2.
在直角三角形ADE中,DE=2,∠A=30°,
∴AE=2DE=4,
∴AD=$\sqrt{A{E}^{2}-D{E}^{2}}$=2$\sqrt{3}$,
∴AB=2AD=4$\sqrt{3}$.
故选B.

点评 此题考查了线段垂直平分线的性质,角平分线的性质,含30°角的直角三角形的性质,勾股定理,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网