题目内容
7.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:| 目的地 车型 | A村(元/辆) | B村(元/辆) |
| 大货车 | 800 | 900 |
| 小货车 | 400 | 600 |
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
分析 (1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
解答 解:(1)设大货车用x辆,小货车用y辆,根据题意得:
$\left\{\begin{array}{l}{x+y=15}\\{12x+8y=152}\end{array}\right.$
解得:$\left\{\begin{array}{l}{x=8}\\{y=7}\end{array}\right.$.
∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9400.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,
解得:x≥5,
又∵3≤x≤8,
∴5≤x≤8且为整数,
∵y=100x+9400,
k=100>0,y随x的增大而增大,
∴当x=5时,y最小,
最小值为y=100×5+9400=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
点评 本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.
练习册系列答案
相关题目
6.
如图将矩形ABCD纸片沿EF折叠,使D点与BC边的中点D′重合,若BC=8,CD=6,则CF=( )
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
4.下列四个几何体:

其中左视图与俯视图相同的几何体共有( )
其中左视图与俯视图相同的几何体共有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |