题目内容

12.如图,△ABC内角∠ABC的平分线BP与外角∠ACD的平分线CP交于点P,如果已知∠BPC=67°,则∠CAP=23°.

分析 根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案

解答 解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=67°,
∴∠ABP=∠PBC=∠PCD-∠BPC=(x-67)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-67°)-(x°-67°)=134°,
∴∠CAF=46°,
在Rt△PFA和Rt△PMA中,
$\left\{\begin{array}{l}{PA=PA}\\{PM=PF}\end{array}\right.$,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=23°.
故答案为:23°.

点评 此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网