题目内容

如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等的依据是(  )

A. SSS B. AAS C. SAS D. HL

C 【解析】【解析】 两边及夹角对应相等的两个三角形全等,这为“边角边”定理,简写成“SAS”.故选C.
练习册系列答案
相关题目

若关于x的方程有增根,则m的值为( )

A. 0 B. 1 C. -1 D. 2

C 【解析】试题解析:方程两边同乘以x?2,得 ① ∵原方程有增根, ∴x?2=0, 即x=2. 把x=2代入①,得 m=?1. 故选C.

多项式15m3n2+5m2n﹣20m2n3的公因式是(   )

A. 5mn B. 5m2n2 C. 5m2n D. 5mn2

C 【解析】多项式15n²+5m²n?20m² 中, 各项系数的最大公约数是5, 各项都含有的相同字母是m、n,字母m的指数最低是2,字母n的指数最低是1, 所以它的公因式是5m²n. 故选C.

如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;求证:CD⊥AB;

证明过程见解析 【解析】试题分析:根据∠ACB=90°得出∠A+∠B=90°,结合已知条件得出∠A+∠ACD=90°,从而得出答案. 试题解析:∵∠ACB=90° ∴∠A+∠B=90° ∵∠ACD=∠B ∴∠A+∠ACD=90° ∴∠ADC=90° ∴CD⊥AB

如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是______.

AC=DE 【解析】用“HL”判定△ABC≌△DBE,已知BC=BE,再添加斜边DE=AC即可.

如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是( )

A.HL B.AAS C.SSS D.ASA

A 【解析】 试题分析:利用点O到AB,AC的距离OE=OF,可知△AEO和△AFO是直角三角形,然后可直接利用HL求证△AEO≌△AFO,即可得出答案. 【解析】 ∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°, 又∵OE=OF,AO为公共边,∴△AEO≌△AFO. 故选A.

如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.

见解析证明. 【解析】 试题分析:利用同角的余角相等得到一对角相等,再由一对直角相等,夹边EC=BC,利用AAS得到△FEC与△ACB全等,利用全等三角形对应边相等即可得证. 试题解析:∵EF⊥AC,∴∠FEC=90°=∠ACB,∴∠F +∠FCE= 90°,∵CD⊥AB,∴∠ADC=90°,∴∠A +∠FCE =90°, ∴∠F=∠A,在△FEC和△ACB中,∵,∴△FEC≌△...

要画出某一图形平移后的图形,必须知道_____和_____

方向 距离 【解析】试题解析:平移前后两个图形全等,但是要画出来的话必须知道平移的方向和距离. 故答案为:(1). 方向 (2). 距离.

下列数值中不是不等式5x≥2x+9的解的是(  )

A. 5 B. 4 C. 3 D. 2

D 【解析】试题解析:移项得,5x﹣2x≥9, 合并同类项得,3x≥9, 系数化为1得,x≥3, 所以,不是不等式的解集的是x=2. 故选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网