ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖª£ºÈçͼ£¬ÔÚËıßÐÎABCDÖУ¬BC=AD£¬AB=CD£®
ÇóÖ¤£ºËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
£¨1£©²¹È«ÒÑÖªºÍÇóÖ¤£¨ÔÚ·½¿òÖÐÌî¿Õ£©£»
£¨2£©¼Îç÷ͬѧÏëÀûÓÃÈý½ÇÐÎÈ«µÈ£¬ÒÀ¾Ý¡°Á½×é¶Ô±ß·Ö±ðƽÐеÄËıßÐÎÊÇÆ½ÐÐËıßÐΡ±À´Ö¤Ã÷£®ÇëÄã°´ËýµÄÏë·¨Íê³ÉÖ¤Ã÷¹ý³Ì£®
·ÖÎö £¨1£©ÓÉÆ½ÐÐËıßÐεÄÅж¨¶¨ÀíÈÝÒ׵óö½á¹û£»
£¨2£©Á¬½ÓAC£¬ÓÉSSSÖ¤Ã÷¡÷ABC¡ÕCDA£¬µÃ³ö¶ÔÓ¦½ÇÏàµÈ¡ÏBAC=¡ÏDCA£¬¡ÏBCA=¡ÏDAC£¬Ö¤³öAB¡ÎDC£¬BC¡ÎAD£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©²¹È«ÒÑÖªºÍÇóÖ¤£º
ÒÑÖª£ºÔÚËıßÐÎABCDÖУ¬BC=AD£¬AB=CD£®
ÇóÖ¤£ºËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
¹Ê´ð°¸Îª£ºCD£»Æ½ÐУ»![]()
£¨2£©Èçͼ£¬Á¬½áAC£¬
ÔÚ¡÷ABCºÍ¡÷CDAÖУ¬$\left\{\begin{array}{l}{AB=CD}&{\;}\\{BC=DA}&{\;}\\{AC=CA}&{\;}\end{array}\right.$£¬
¡à¡÷ABC¡ÕCDA£¨SSS£©£¬
¡à¡ÏBAC=¡ÏDCA£¬¡ÏBCA=¡ÏDAC£¬
¡àAB¡ÎDC£¬BC¡ÎAD£¬
¡àËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÐÐËıßÐεÄÅж¨¶¨Àí¡¢È«µÈÈý½ÇÐεÄÅж¨·½·¨¡¢Æ½ÐÐÏßµÄÅж¨£»ÊìÁ·ÕÆÎÕÆ½ÐÐËıßÐεÄÅж¨£¬Ö¤Ã÷Èý½ÇÐÎÈ«µÈÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®ÊʺÏÏÂÁÐÌõ¼þµÄ¡÷ABCÖУ¬Ö±½ÇÈý½ÇÐεĸöÊýΪ£¨¡¡¡¡£©
¢Ùa=3£¬b=4£¬c=5£»
¢Úa=6£¬¡ÏA=45¡ã£»
¢Ûa=2£¬b=2£¬c=2$\sqrt{2}$£»
¢Ü¡ÏA=38¡ã£¬¡ÏB=52¡ã£®
¢Ùa=3£¬b=4£¬c=5£»
¢Úa=6£¬¡ÏA=45¡ã£»
¢Ûa=2£¬b=2£¬c=2$\sqrt{2}$£»
¢Ü¡ÏA=38¡ã£¬¡ÏB=52¡ã£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
14£®
Èçͼ£¬¡÷ABCµÄ¶¥µãÊÇÕý·½ÐÎÍø¸ñµÄ¸ñµã£¬ÔòsinAµÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{\sqrt{10}}{10}$ | C£® | $\frac{\sqrt{5}}{5}$ | D£® | $\frac{3\sqrt{10}}{10}$ |